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INTRODUCTION 

 
 
 

• This course deals with pattern recognition. A pattern is either a 

physical object, for example a book or a chair or an abstract notion, 

like style of talking, or style of writing. It is also a shared property of a 

set of objects; for example, chairs, rectangles, or blue colored objects. 

We illustrate using ellipses and rectangles shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Ellipses and Rectangles 
 
 

 

Cognition is the act of seeing or perceiving, whereas recognition 
means as having seen or perceived. There are three ways of 
appreciating the activity of pattern recognition in a simple manner: 

 

1. Classification: Assign a pattern to one of the already known (se-

mantically labelled) classes. For example, consider the two classes 

of physical objects shown in Figure 1: ellipses and rectangles where 

ellipse and rectangle are class labels. Now the classification prob-

lem, prominent in pattern recognition, involves: 
 

(a) Either learn a model or directly use the training data set 
(collection of labelled patterns) and 

 
(b) assign a class label to a new pattern (test pattern) or 

equiv-alently assign the test pattern to one of the known 

classes. That is, with respect to objects in Figure 1, given 
a new object we would like to classify it as either an ellipse 
or a rectangle. 
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The Classification problem: We are given a collection of se-mantically labelled patterns, X , where 
 

 

X =  {(X1, C 1), (X2, C 2), · · · , (Xn, C n)} 
 

We need to note the following here: 

– The number of classes, K , is fixed and finite. The value of K 

is known a priori. Let the class labels be C1,  C2,  · · · ,  CK .  

– The set X is finite and is of size (cardinality) n. Further, Xi represents the ith pattern 

and C i is the corresponding seman-tic class label for i = 1, · · · , n. So, observe that 

C i ∈  C =  {C1,  C2,  · · · ,  CK }. 

– Let X  be a test pattern.  Then, either we use the training  

set X directly or models M1, M2, · · · , MK learnt from X to assign a class label, out of 

C1, C2, · · · , CK , to X . Here, model Mi is learnt from the training patterns drawn 

from class Ci, for i = 1, 2, · · · , K . 
 

An Example: Let us say that we are given the following collec-tion of chairs and humans as the training set. 
 
 

X =  {(X1, chair), (X2, chair), (X3, human), (X4, human), (X5, human), (X6, chair), (X7, human), 

(X8, chair), (X9, human), (X10, human)} 

 

Now the problem is, given a test pattern X , classify X as either chair or human. In 

other words, assign one of the two class labels to X . 

2. Clustering: Assign a pattern to one of the syntactically labelled  
classes or clusters. For example, consider two clusters of patterns, labelled C1 and 

C2. Given a new pattern, assign it to either C1 or C2 based on the similarity between 

the pattern and the collection. Here, the labels are syntactic because we can switch the 

labels of the two collections without affecting the results. Clustering is concerned with 

grouping of patterns based on similarity. Patterns in a cluster are similar to each other 

whereas patterns in different clusters are dissimilar. 
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Clustering Problem: We are given a collection, X , of syntacti-cally labelled patterns, where 
 

X =  {X1,  X2,  · · · ,  Xn}. 
 

Note that the patterns are syntactically labelled using different subscripts. The problem is 

to partition the set X into some finite number of blocks or clusters. In other words, we 

partition X , so that 

X =  C1  ∪  C2  ∪  C3  · · · ∪  CK 
 

where Ci is the ith cluster. Clustering is done so that none of the K clusters is empty and 

any pair of clusters do not overlap, which means 

Ci 6=  ∅ ,  and Ci Cj = ∅  f or i 6= j and i, j ∈  {1, 2,  · · · ,  K }. 
 

An Example of Clustering: Consider a collection of patterns 
 

X =  {X1,  X2,  · · · ,  X10}. 
 

A possible partition, of X having two clusters is 
C1 = {X1, X2, X4, X5, X7, X8} and C2 = {X3, X6, X9, X10}. Typically, a notion of 

similarity or matching is used to partition  

X . Patterns in C1 are similar to other patterns in C1 and patterns in C2 are similar to other 

patterns in C2; a pattern, say X2, in C1 is dissimilar to a pattern, say X9, in C2. In clustering, 

it is possi-ble to switch the labels; for example, we have the same partition as above if 
 

C1 =  {X3, X6, X9, X10} 

C2 =  {X1, X2, X4, X5, X7, X8} 
 
 

3. Semi-Supervised Classification: Here, we are given a small collection of 

semantically labelled patterns and a large collection of syntactically labelled patterns. The 

problem is to assign a new pattern (test pattern) to one of the classes or equivalently assign 

a semantic label to the test pattern. 
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Semi-Supervised Classification Problem: We are given a col-
lection, X , given by 

 

X =  {(X1, C 1),  · · · (Xl , C l),  Xl+1,  · · · Xl+u} 
 

where l patterns are semantically labelled and u patterns are 

syn-tactically labelled. The problem is to build models M1, M2, · 

· · MK corresponding to classes C1, C2, · · · , CK respectively. 
Now given a new pattern, X , classify it to one of the K classes 
using the models built. 

 

An Example: Given a set, X , of patterns given by 
 

X =  {(X1, human),  (X2, chair),  X3,  X4,  X5,  X6,  X7} 

 

the problem is to assign a class label of chair or human to a 
new pattern (test pattern) X . 

 

The popularity of pattern recognition (PR) may be attributed to its 
application potential; there are several important applications. For 
example, 

 

– document recognition: there are a variety of applications in-
cluding classification and clustering of 

 

∗  email messages and web documents; one requirement is 
to recognize whether a mail is spam or not. 

 

∗  fingerprints, face images, and speech signals which form 
an important variety of documents used in biometrics. 

 

∗  health records which may include x-ray images, 
ultrasound images, ECG charts and reports on various 
tests, diagnosis, and prescriptions of medicines. 

 

∗  legal records including judgments delivered, petitions and 
ap-peals made. 

 

– remote sensed data analysis: for example, images obtained 
using satellite or aerial survey are analysed to discriminate 
healthy crops from deceased crops. 

 

– bioinformatics: Here, classification and clustering of DNA and 
protein sequences is an important activity. 
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– semantic computing: Knowledge in different forms is used in clustering and classification 

to facilitate natural language under-standing, software engineering, and information retrieval. 
 

– There are plenty of other areas like agriculture, education, and economics where pattern recognition tools 

are routinely used. 
 

Abstractions 

 

In machine recognition of patterns, we need to process patterns so that their representations can be 

stored on the machine. Not only the pattern representations, but also the classes and clusters need to be 

represented ap-propriately. In pattern recognition, inputs are abstractions and the outputs also are 

abstractions. 
 

• As a consequence, we do not need to deal with all the specific details of the individual patterns. 

 

• It is meaningful to summarize the data appropriately or look for an apt abstraction of the data. 
 

• Such an abstraction is friendlier to both the human and the machine. 
 

• For the human it is easy for comprehension and for the machine it reduces the computational 

burden in the form time and space required for processing. 
 

• Generating an abstraction from examples is a well-known paradigm in machine learning. 

 

• Specifically, learning from examples or supervised learning and learning from observations or 

clustering are the two important machine learning paradigms that are useful here. 
 

• In artificial intelligence, the machine learning activity is enriched with the help of domain 

knowledge; abstractions in the form of rule-based systems are popular in this context. 
 

• In addition data mining tools are useful when the set of training pat-terns is large. 
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• So, naturally pattern recognition overlaps with machine learning, 
arti-ficial intelligence and data mining. 

 

Two popular paradigms for pattern recognition are: 
 

• statistical pattern recognition: In this case, vector-spaces are used to 

represent patterns and collections of patterns. Vector-space 

representations are popular in information retrieval, data mining, and 

statistical machine learning. Abstractions like vectors, graphs, rules or 

probability distributions are used to represent clusters and classes. 
 

• syntactic pattern recognition: In this case, patterns are viewed as 

sentences in a formal language like mathematical logic. So, it is useful 

in describing classes and clusters of well-structured patterns. This 

paradigm is popular as linguistic or structural pattern recognition. 
 

• Readers interested in some of these applications may refer to 

popu-lar journals such as Pattern Recognition 

(www.elsevier.com/locate/pr) and IEEE Transactions on Pattern 

Analysis and Machine Intelligence (www.computer.org/tpami) for 

details. Similarly, for specific applica-tion areas like bioinformatics 

refer to Bioinformatics (http://bioinformatics.oxfordjournals.org/) and 

for semantic comput-ing refer to International Journal of Semantic 

Computing (www.worldscinet.com/ijsc/). An excellent introduction 

to syntactic pattern Recognition is providede by Syntactic Pattern 

Recognition: An Introduction by RC Gonzalez and MG Thomason, 

Addision-Wesley, 1978. 
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Assignment 
 

Solve the following problems: 
 

1. Consider the data, of four adults indicating their health status, 
shown in the following table. Devise a simple classifier that can 
properly classify all the four patterns. How is the fifth adult having a 
weight of 65 KGs classified using the classifier? 

 

Weight of Adults in KGs Class label 

50 Unhelathy 

60 Healthy 

70 Healthy 

80 Unhealthy 
 
 
 
 

2. Consider the data items bought in a supermarket. The features 
include cost of the item, size of the item, colour of the object and 
the class label. The data is shown in the following table. Which 
feature would you like to use for classification? Why? 

 

item no cost in Rs. volume in cm3
 colour Class label 

1 10 6 blue inexpensive 

2 15 6 blue inexpensive 

3 25 6 blue inexpensive 

4 150 1000 red expensive 

5 215 100 red expensive 

6 178 120 red expensive 
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Different Paradigms for Pattern Recognition 

 

• There are several paradigms in use to solve the pattern recognition 
problem. 

 

• The two main paradigms are 
 

1. Statistical Pattern Recognition 
 

2. Syntactic Pattern Recognition 
 

• Of the two, the statistical pattern recognition has been more 
popular and received a major attention in the literature. 

 

• The main reason for this is that most of the practical problems in 
this area have to deal with noisy data and uncertainty and statistics 
and probability are good tools to deal with such problems. 

 

• On the other hand, formal language theory provides the background for 

syntactic pattern recognition. Systems based on such linguistic tools, 

more often than not, are not ideally suited to deal with noisy envi-

ronments. However, they are powerful in dealing with well-structured 

domains. Also, recently there is a growing interest in statistical pattern 

recognition because of the influence of statistical learning theory. 
 

• This naturally prompts us to orient material in this course towards 
statistical classification and clustering. 

 

Statistical Pattern Recognition 

 

• In statistical pattern recognition, we use vectors to represent 
patterns and class labels from a label set. 

 

• The abstractions typically deal with probability density/distributions 
of points in multi-dimensional spaces, trees and graphs, rules, and 
vec-tors themselves. 

 

• Because of the vector space representation, it is meaningful to talk 
of subspaces/projections and similarity between points in terms of 
dis-tance measures. 
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• There are several soft computing tools associated with this notion. 
Soft computing techniques are tolerant of imprecision, uncertainty 
and ap-proximation. These tools include neural networks, fuzzy 
systems and evolutionary computation. 

 

• For example, vectorial representation of points and classes are 
also employed by 

 

– neural networks, 
 

– fuzzy set and rough set based pattern recognition schemes. 

 

• In pattern recognition, we assign labels to patterns. This is 
achieved using a set of semantically labelled patterns; such a set is 
called the training data set. It is obtained in practice based on 
inputs from ex-perts. 

 

• In Figure  1, there are patterns of Class ‘X’ and Class ‘+’. 
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Figure 1: Example set of patterns 
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• The pattern P is a new sample (test sample) which has to be assigned either to Class ‘X’ or Class 

‘+’. There are different possibilities; some of them are 
 

– The nearest neighbour classifier (NNC): Here, P is assigned to the class of its 

nearest neighbour. Note that pattern X1 (labelled ‘X’) is the nearest neighbour of P. So, the 

test pattern P is assigned the class label ‘X’. The nearest neighbour classifier is explained in 

Module 7.  

– The K-Nearest neighbour classifier (KNNC) is based on the class 
 

labels of K nearest neighbours of the test pattern P . Note that patterns X1 (from class ‘X’), X6 

(from class ‘+’) and X7 (from class ‘+’) are the first three (K=3) neighbours.A majority ( 2 out of 3) 

of the neighbours are from class ‘+’. So, P is assigned the class label ‘+’. We discuss the KNNC in 

module 7. 
 

– Decision stump classifier: In this case, each of the two features is considered for 

splitting; the one which provides the best separation between the two classes is chosen. The 

test pattern is classified based on this split. So, in the example, the test pattern P is 

classified based on whether its first feature (x-coordinate) value is less than A or not. If it is 

less than A, then the class is ‘X’, else it is ‘+’. In Figure 1, P is assigned to class ‘X’. A 

generalization of the decision stump called the decision tree classifier is studied 

in module 12.  

– Separating line as decision boundary: In Figure  1, the two classes 
 

may be characterized in terms of the boundary patterns falling on the support lines. In the 

example, pattern X1 (class ‘X’) falls on one line (say line1) and patterns X5 and X7 (of 

class ‘+’) fall on a parallel line (line2). So, any pattern closer to line 1 is assigned the class 

label ‘X’ and similarly patterns closer to line2 are assigned class label ‘+’. We discuss 

classifiers based on such linear discriminants in module 12. Neural networks and support 

vector machines (SVMs) are members of this category. We discuss them in module 13. 
 

– It is possible to use a combinations of classifiers to classify a test pattern. For example, P could be classified 

using weighted nearest 
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neighbours. Suppose such a weighted classifier assigns a weight 

of 0.4 to the first neighbour (pattern X1, labelled ‘X’), a weight of 

0.35 to the second neighbour (pattern X6 from class ‘+’) and a 

weight of 0.25 to the third neighbour (pattern X7 from class ‘+’). 
We first add the weights of the neighbours of P coming from the 

same class. So, the sum of the weights for class ‘X’, WX is 0.4 as 
only the first neighbour is from ‘X’. The sum of the weights for 

class ‘+’, W+ is 0.6 (0.35 ‘ +′ 0.25) corresponding the remaining 

two neighbours (8 and 6) from class ‘+’. So, P is assigned class 
label ‘+’. We discuss combinations of classifiers in module 16. 

 

– In a system that is built to classify humans into tall, medium 
and short, the abstractions, learnt from examples, facilitate 
assigning one of these class labels (tall, medium or short) to a 
newly en-countered human. Here, the class labels are 
semantic; they convey some meaning. 

 

– In the case of clustering, we can group a collection of 
unlabelled patterns also; in such a case, the labels assigned to 
each group of patterns is syntactic, simply the cluster identity. 

 

– Several times, it is possible that there is a large training data 

which can be directly used for classification. In such a context, 

clustering can be used to generate abstractions of the data and 

use these abstractions for classification. For example, sets of 

patterns corresponding to each of the classes can be clustered to 

form sub-classes. Each such subclass (cluster) can 

berepresented by a single prototypical pattern; these 

representative patterns can be used to build the classifier instead 

of the entire data set. In Modules 14 and 15, a discussion on 

some of the popular clustering algorithms is presented. 

 

Importance of Representation 

 

• It is possible to directly use a classification rule without generating 
any abstraction, for example by using the NNC. 

 

• In such a case, the notion of proximity/similarity (or distance) is 
used to classify patterns. 
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• Such a similarity function is computed based on the representation of 
patterns; the representation scheme plays a crucial role in classification. 

 

• A pattern is represented as a vector of feature values. 
 

• The features which are used to represent patterns are important. 
We illustrate it with the help of the following example. 

 

Example 

 

Consider the following data where humans are to be categorized into tall 
and short. The classes are represented using the feature Weight. If a newly 

 

 

Weight of human (in Kilograms) Class label 
  

40 tall 
50 short 

60 tall 

70 short 
  

 
 
 

encountered person weighs 46 KGs, then he/she may be assigned the class 

label short because 46 is closer to 50. However, such an assignment does 

not appeal to us because we know that weight and the class labels TALL and 

SHORT do not correlate well; a feature such as Height is more appropriate. 

Module 2 deals with representation of patterns and classes. 

 

Overview of the course 

 

• Modules 3-6 deal with representation of patterns and classes. Also, 
proximity between patterns is discussed in these modules. 

 

• Various classifiers are discussed in modules 7 to 13 and module 16. 
 

– The most popular and simple classifier is based on the NNC. In 
such a classification scheme, we do not have any training 
phase. A detailed discussion on nearest neighbor classification 
is presented in Module 7, 8, and 9. 
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– It is important to look for theoretical aspects of the limits of 
clas-sifiers under uncertainty. Bayes classifier characterizes 
optimality in terms of minimum error-rate classification. It is 
discussed in Module 10. 

 

– A decision tree is a transparent data structure to deal with clas-
sification of patterns employing both numerical and categorical 
features. We discuss decision tree classifiers in Module 11. 

 

– Using linear decision boundaries in high-dimensional spaces has 

gained a lot of prominence in the recent past. Support vector 

machines (SVMs) are built based on this notion. In Module 12 

and 13, the role of SVMs in classification is explored. 
 

– It is meaningful to use more than one classifier to arrive at the 
class label of a new pattern. Such combination of classifiers 
forms the basis for Module 16. 

 

• In Modules 14 a discussion on some of the popular clustering 
algorithms is presented. 

 

• There are several challenges faced while clustering large datasets. 
In module 15 some of these challenges are outlined and algorithms 
for clustering large datasets are presented. 

 

• Finally we consider an application of document classification and 
re-trieval in module 17. 

 

Assignment 
 

• Consider a collection of data items bought in a supermarket. The 
features include cost of the item, size of the item and the class 
label. The data is shown in the following table. Consider a new item 
with cost = 34 and volume = 8. How do you classify this item using 
the NNC? How about KNNC with K = 3? 

 
• Consider the problem of classifying objects into triangles and rectangles. 

Which paradigm do you use? Provide an appropriate representation. 
 

• Consider a variant of the previous problem where the classes are 
small circle and big circle. How do you classify such objects? 
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item no cost in Rs. volume in CM
3

 Class label 

1 10 6 inexpensive 

2 15 6 inexpensive 

3 25 6 inexpensive 

4 50 10 expensive 

5 45 10 expensive 

6 47 12 expensive 
 

 

What is a pattern? 

 

• A pattern represents a physical object or an abstract notion. For ex-

ample, the pattern may represent physical objects like balls, animals 

or furniture. Abstract notions could be like whether a person will play 

tennis or not(depending on features like weather etc.). 
 

• It gives the description of the object or the notion. 
 

• The description is given in the form of attributes of the object. 
 

• These are also called the features of the object. 
 

 

What are classes? 
 

• The patterns belong to two or more classes. 
 

• The task of pattern recognition pertains to finding the class to which 
a pattern belongs. 

 

• The attributes or features used to represent the patterns should be 
discriminatory attributes. This means that they help in classifying 
the patterns. 

 

• The task of finding the discriminatory features is called feature 
extrac-tion/selection. 

 

 

What is classification? 

 

• Given a pattern, the task of identifying the class to which the 
pattern belongs is called classification. 

 

• Generally, a set of patterns is given where the class label of each 
pattern is known. This is known as the training data. 

 

• The information in the training data should be used to identify the 
class of the test pattern. 
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Figure 1: Dataset of two classes 
 
 

• This type of classification where a training set is used is called 
super-vised learning. In supervised learning, we can learn about 
the values of the features for each class from the training set and 
using this infor-mation, a given pattern is classified. 

 
 

Consider the patterns of two classes given in Figure 1. This is the 
training data. 

 

Using the training data, we can classify the pattern P. The 
information of the two classes available in the training data can be 
used to carry out this classification. There are a number of 
classifiers which carry out supervised classification like nearest 
neighbour and related algorithms, Bayes classifier, decision trees, 
SVM, neural networks, etc which are discussed in later modules. 

 

Representation of patterns 
 

• Patterns can be represented in a number of ways. 
 

• All the ways pertains to giving the values of the features used for 
that particular pattern. 

 

• For supervised learning, where a training set is given, each pattern 
in the training set will also have the class of the pattern given. 
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Representing patterns as vectors 
 

• The most popular method of representing patterns is as vectors. 
 

• Here, the training dataset may be represented as a matrix of size 
(nxd), where each row corresponds to a pattern and each column 
represents a feature. 

 

• Each attribute/feature/variable is associated with a domain. A 
domain is a set of numbers, each number pertains to a value of an 
attribute for that particular pattern. 

 

• The class label is a dependent attribute which depends on the ‘d’ 
in-dependent attributes. 

 

Example The dataset could be as follows : 
 

 f1 f2 f3 f4 f5 f6 Class label 
Pattern 1: 1 4 3 6 4 7 1 

Pattern 2: 4 7 5 7 4 2 2 

Pattern 3: 6 9 7 5 3 1 3 

Pattern 4: 7 4 6 2 8 6 1 

Pattern 5: 4 7 5 8 2 6 2 

Pattern 6: 5 3 7 9 5 3 3 

Pattern 7: 8 1 9 4 2 8 3 
        

 

In this case, n=7 and d=6. As can be seen,each pattern has six 
attributes( or features). Each attribute in this case is a number between 1 
and 9. The last number in each line gives the class of the pattern. In this 
case, the class of the patterns is either 1, 2 or 3. 

 

2. If the patterns are two- or three-dimensional, they can be plotted. 
 

3. Consider the dataset 
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   Figure 2: Dataset of three classes  
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Pattern 1 : (1,1.25,1)   Pattern 2 : (1,1,1)  
 

Pattern 3 : (1.5,0.75,1)   Pattern 4 : (2,1,1)  
 

Pattern 5 : (1,3,2)     Pattern 6 : (1,4,2)  
 

Pattern 7 : (1.5,3.5,2)   Pattern 8 : (2,3,2)  
 

Pattern 9 : (4,2,3)     Pattern 10 : (4.5,1.5,3) 
 

Pattern 11 : (5,1,3)     Pattern 12 : (5,2,3)  
  

 

Each triplet consists of feature 1, feature 2 and the class label. This 
is shown in Figure 2. 

 

Representing patterns as strings 
 

X Here each pattern is a string of characters from an alphabet. 
 

X This is generally used to represent gene expressions. 
 

X For example, DNA can be represented as 

 

GTGCATCTGACTCCT... 

 

RNA is expressed as 
 
GUGCAUCUGACUCCU.... 

 
 

This can be translated into protein which would be of the form 
 
 

VHLTPEEK .... 
 

 

\endash  Each string of characters represents a pattern. 
Operations like pattern matching or finding the similarity between 
strings are carried out with these patterns. 

 

\endash  More details on proteins and genes can be got from  [1]. 
 

Representing patterns by using logical operators 

 

\endash  Here each pattern is represented by a sentence(well 
formed formula) in a logic. 

 

\endash  An example would be  
if (beak(x) = red) and (colour(x) = green) then parrot(x)  
This is a rule where the antecedent is a conjunction of primitives 
and the consequent is the class label. 

 

\endash  Another example would be  
if (has-trunk(x)) and (colour(x) = black) and (size(x) = large) then 
elephant(x) 
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Representing patterns using fuzzy and rough sets 

 

\endash  The features in a fuzzy pattern may consist of 
linguistic values, fuzzy numbers and intervals. 

 

\endash  For example, linguistic values can be like tall, 
medium, short for height which is very subjective and can be 
modelled by fuzzy membership values. 

 

X A feature in the pattern maybe represented by an interval instead of 
a single number. This would give a range in which that feature falls. 
An example of this would be the pattern 

 
 

(3, small, 6.5, [1, 10]) 
 
 

The above example gives a pattern with 4 features. The 4th feature 
is in the form of an interval. In this case the feature falls within the 
range 1 to 10. This is also used when there are missing values. 
When a particular feature of a pattern is missing, looking at other 
patterns, we can find a range of values which this feature can take. 
This can be represented as an interval. 

 
 

The example pattern given above has the second feature as a 
linguistic value. The first feature is an integer and the third feature 
is a real value. 

 

X Rough sets are used to represent classes. So, a class description will 

consist of an upper approximate set and a lower approximate set. An 

element y belongs to the lower approximation if the equivalence class to 

which y belongs is included in the set. On the other hand y belongs to the 

upper approximation of the set if its equivalence class has a non-empty 

intersection with the set. The lower approximation consists of objects 

which are members of the set with full certainty. The upper approximation 

consists of objects which may possibly belong to the set. 
 

X For example, consider Figure 3. This represents an object whose 
loca-tion can be found by the grid shown. The object shown 
completely cov-ers (A3,B2), (A3,B3), (A4,B2) and (A4,B3). The object 

falls partially in (A2,B1),(A2,B2),(A2,B3), 
(A2,B4),(A3,B1),(A3,B4),(A4,B1),(A4,B4), (A5,B2), and (A5,B3). The 
pattern can be represented as a rough set where the first four values 
of the grid gives the lower approximation and the rest of the values of 
the grid listed above form the upper ap-proximation. 

 

X Not just the features, each pattern can have grades of membership to 
every class instead of belonging to one class. In other words, each 
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Figure 3: Representation of an object 
 

 

pattern has a fuzzy label which consists of c values in [0,1] where each component gives the grade of 

membership of the pattern to one class. Here c gives the number of classes. For example, consider a 

collection of documents. It is possible that each of the documents may be associated with more than 

one category. A paragraph in a document, for instance, may be associated with sport and another 

with politics. 
 

3. The classes can also be fuzzy. One example of this would be to have linguistic values for classes. The 

classes for a set of patterns can be small and big. These classes are fuzzy in nature as the 

perception of small and big is different for different people. 
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Representing a Dataset as a Tree 
 

• Each attribute in a pattern can be represented as an edge in a tree. 
 

• Examples of this would be the Frequent Pattern tree (FP tree) and 
the Pattern Count tree (PC tree). Here the attributes are assumed 
to be categorical, that is, the domain is a finite collection of values. 
The FP-tree has been explained in this lesson. 

 

• Each pattern may be represented as a node in a tree. Some of the 
trees used are Minimum Spanning Tree (MST), Delauney Tree 
(DT), R-tree and the K-D tree. The MST and the K-D tree has been 
described in this lesson. 

 

Minimum Spanning Tree 
 

• The complete set of patterns can be represented using the 
minimum spanning tree. 

 

• Consider a graph where the cost of each edge is known. 
 

• A spanning tree is a tree which consists of a subset of all the edges 
in the graph which spans all the nodes of the graph. 

 

• The spanning tree for a graph is not unique and a number of 
spanning tree can be found. 

 

• The minimum spanning tree is the spanning tree which gives the 
total minimum cost. 

 

• It is possible to have multiple minimum spanning trees for some datasets. 
 

• One method of obtaining the MST is by using the Prim’s algorithm. 
 

• The algorithm is as follows : 
 

 Choose one vertex v as the starting point. 
 

 Find the shortest outgoing edge from v and add it to the MST. 
 

 Then keep adding the shortest edge from the vertices in the 
MST so that the edge added does not form a cycle with the 
existing edges. 
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• Stop the algorithm when there are n-1 edges where n is the 
number of vertices. 
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Figure 1: Minimum Spanning Tree 
 

 

• Figure 1 shows a pattern set of 9 points. The minimum spanning 
tree is shown for the 9 points. 

 

• MST can be used for clustering. Find the edge with the maximum 
distance in the MST and delete that edge. Here 3-4 would be 

deleted. Then find the edge with the maximum distance in the 
resulting tree and delete it. Now 6-7 would be deleted. If we stop 
deleting edges at this point, we get three separate components. 

Each of these would be one cluster. If we want four clusters, we 
can again find the edge with the maximum distance and delete it. 
Here, through appropriate deletion, we have divided the patterns 

into three clusters. Cluster 1 having patterns 1, 2 and 3, Cluster 2 
having 4, 5 and 6 and Cluster 3 having 7, 8 and 9. 

 

• An important property is that each pattern is a numerical vector and an 
edge is characterized by the distance between two such vectors. 

 

Frequent Pattern Trees(FP trees) 
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• FP tree is used to represent the patterns in a transaction database. 
 

• An example of a transaction database is the collection of transactions at a supermarket. 

 

• The items bought by each customer at the supermarket is a transaction in the database. This is a pattern in 

the database. It can be seen that the length of each pattern in this database is not of the same size. 
 

• In this database, it is necessary to find the association between items in the database. In other 

words, the presence of some item may imply the presence of some other items in the transactions. 
 

• It is necessary to first find the frequent items in the database. Then the FP-tree can be constructed 

to help in efficiently mine the frequent itemsets in the database. 
 

• The FP tree is a compressed tree structure where only items which occur more frequently are 

considered. The number of times an item occurs in the transaction database is the support of 

that item. So when we say that only frequently occurring items are included, it means that items 

which have a support below a threshold are left out. 
 

• The items in the transactions are then reordered so that more frequent items occur earlier and the 

less frequent items occur later in the trans-action. 
 

• The first transaction is drawn with the items as nodes and links con-necting the nodes. Each item has a count of one. 
 

 

• The second transaction is then drawn. If it has a overlap with the existing link then it is not 

redrawn but the count is increased of those items. 
 

• When the item does not correspond to any of the existing, those links are drawn. 
 

• Let us consider an example. 
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Consider transactions in a supermarket. For simplicity, let us consider 
only 15 items A to O. Let the items picked up by four customers be 

 

Transaction 1 : a,b,c,g,e,d,i,h  
Transaction 2 : b,c,d,e,f,o,k,m  
Transaction 3 : e,j,n,o,c,n,g,i  
Transaction 4 : b,f,o,m,n,k,c,d,e,g,i,j,l 

 

The frequency of each item will be a:1, b:3, c: 4, d: 3, e: 4,f: 1, g: 3, 
 

• 1, i: 2, j: 2, k: 2, l: 1, m: 2, n: 2, o: 3 . Here a:1 means A occurs in 
one transaction. Similarly, d:3 stands for D occurring in 3 
transactions, namely transaction 1, transaction 2 and transaction 4. 

 

If only items with frequency 3 and above are considered, then the 
items being considered are d:3, e:4, c:4, g:3, b:3 and o:3. Then the 
transac-tions become 

 

Transaction 1 : b,c,g,e,d  
Transaction 2 : b,c,d,e,o  
Transaction 3 : e,c,o,g  
Transaction 4 : b,c,o,d,e,g 

 
 

Ordering the transactions so that items which are more frequent 
occur first we get 

 

Transaction 1 : e,c,b,d,g  
Transaction 2 : e,c,b,d,o  
Transaction 3 : e,c,g,o  
Transaction 4 : e,c,b,d,g,o 

 
 

Items which have the same frequency are ordered arbitrarily. The 
above items are then used to construct the FP-tree. 

 

Figure 2 shows the FP-tree for the example above. 
 

• All transactions are drawn starting from the root. The largest trans-
action is taken first. A link is drawn from the root to e, then from e 

 



25 

 

 

headers of X  root   
 

nodes 
   

 

e:4 
   

 

e    
 

    
 

c 
c:4    

 

X    
 

    
 

 b:3  
X  g:1 

 

b X  
 

d d:3 X 
X 

 X  

   
 

  o:1  o:1 
 

g 

g;2 
X

 

   
 

    
  

4. X  
o:1 

 

Figure 2: Frequent-Pattern Tree(FP-tree) 
 

 

to c, c to b and so on, till o is reached. For each node, a count is kept 

of how many times that node is utilised. Now each of the nodes will 

get a count of 1. So we get e:1, c:1, h:1, d:1, g:1 and o:1. Next, taking 

transaction 2, the first element is e. We need to see if there is already 

an existing link from the root. In this case, since it exists, the count of 

e is incremented by 1. So we get e:2. Next from e, we see if there is 

already an existing link to the next element of transaction 2 which is c. 

Since it exists, we only increment c to get c:2. Similarly we increment 

b,d and g to get b:2, d:2 and g:2. We next consider transaction 3. 

Using the same procedure, we get e:3, c:3, b:3, d:3 and then we draw 

a new link from d to o and the count of o will be o:1. Then we consider 

transaction 4. We increment e and c to get e:4 and c:4. We then draw 

a new link from c to g and set the count of g to 1 giving g:1. From g, 

we again draw a new link to o giving o:1. This completes the FP-tree. 
 

X An important observation is that any categorical pattern may be viewed 

as a transaction. Each feature of the pattern is equivalent to an item in a 

transaction. For example, consider Figure 3. Let each square be 
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Figure 3: Representation of an object 
 

represented by a letter as shown in the following table. Then the object 
 

 

a b c d 
    

e f g h 
    

i j k l 
    

m n o p 
    

q r s t 
    

 

in Figure 3 can be represented as 
 
(e f g h i l m p r s) 
 
 
Another object can be represented by another combination of the En-glish 
alphabet. 
 
 
We therefore get patterns which are of different lengths and each letter in 
a pattern is equivalent to an item in a transaction. Thus it can be seen that, 
each pattern in this case can be viewed as a transaction. 
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\endash  Further an association rule may be viewed as a 
conjunctive logical formula. An association rule will be of the form  
If (item1) and (item2) and (item3) then (item3)  
In the case of the supermarket where each transaction gives the items 
bought by one customer, the association rule will be of the form  
If (toothpaste) and (soap) and (powder) then (milk)  
In the example shown in Figure 3 the association rule will be of the 
form  
If (a) and (q) and (e) then (d)  
It can, therefore, be seen that the association rule is a conjunctive 
logical formula. 

 

K-d Tree 
 

\endash  K-d tree is another name for the k-dimensional tree. 
 

\endash  It is a data structure for storing patterns in k-
dimensional space by partitioning the space. 

 

\endash  The k-d tree is a binary tree structure for storing and 
performing op-erations on data containing k-dimensional keys. 

 

\endash  The K-d tree is used to represent a set of patterns 
which have been partitioned. Each region of the K-d tree 
represents a subset of the patterns. 

 

\endash  Consider the set of patterns represented by Figure  4. 
 

    A    
 

 B 
    C  

 

       
 

 D  E 
 F 

 G  

     
 

H I J K L M N O 
 

X1 X2 X3 X4 X5 X6 X7 X8 
  

 

Figure 4: Partition of patterns for K-d tree 
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\endash  A represents the complete set of patterns. At each 
point, the set of patterns is partitioned into two blocks giving rise to 
a binary tree. 

 

\endash  A is partitioned into B and C. B is partitioned into D 
and E. C is partitioned into F and G. D is partitioned into H and I . E 
is parti-tioned into J and K. F is partitioned into L and M . G is 
partitioned into N and O. 

 

\endash  Figure  5 gives the K-d tree for the above data.  

 

X1 
 

X2
 X5 X6 

 
 
 
 
 
 

 

X3 X4 

 

X7 X8 
 
 
 
 
 
 

 

Figure 5: Partition of patterns for K-d tree 
 

 

Assignment 
 

X Consider the data shown in the following table where each pattern 

is represented by 4 binary features F1, F2, F3, AND F4. Suggest: 
 

 a vector-space representation 
 

 a logic based representation 
 

 Which of the above two representations is suited well for the 
data? Why? 
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pattern no F1 F2 F3 F4 Class label 

1 1 0 1 0 1 

2 0 1 0 1 2 

3 1 0 1 0 1 

4 1 0 1 0 1 

5 0 1 0 1 2 
 
 
 

 

4. Consider the table below of 4 transactions in a supermarket where we 

consider only 4 items, I1, I2, I3, AND I4. There are two classes. Obtain 

the frequent patterns by considering items with frequency 2 and 
above. Is it possible to use the resultant FP-Tree in classification? 

 
 

Transaction no I1 I2 I3 I4 Class label 

1 1 0 1 0 inexpensive 

2 0 1 0 1 expensive 

3 1 0 1 0 inexpensive 

4 0 1 0 1 expensive 
 
 
 
 

X Consider a two-class problem where the classes are labeled pen 
drive and laptop. Suggest a set of features that could be used to 
discriminate between these two classes of objects. What is the 
corresponding vector-space representation? 

 
X For what kind of datasets does the FP-Tree be large in size? 

Provide such a dataset. 
 

X Given a dataset, will the corresponding MST be unique? Why is it 
so? If not provide a counterexample. 

 
X Consider a dataset in a d-dimensional space. What is the worst-

case size of a K-d tree built on such a dataset? 
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Proximity measures 

 

• Whenever classification is carried out, it is done according to some similarity of the test pattern to 

the training patterns. 
 

• For clustering also, patterns which are similar to each other are to be put into the same cluster 

while patterns which are dissimilar are to be put into different clusters.  

• To determine this similarity/dissimilarity, proximity measures are used. 
 

• Some of the proximity measures are metrics while some are not. 
 

• The distance between two patterns is used as a proximity measure. If this distance is smaller, then 

the two patterns are more similar. 
 

• For the distance measure to be metric, the following properties should hold : 
 
 

Positive Reflexivity : d(X,X) = 0 ∀  X 

Symmetry : d(X,Y) = d(Y,X) ∀X, Y and 

Triangular Inequality d(X,Z) + d(Z,Y) ≥ d(X,Y) ∀X, Y, Z 
 

where d(X,Y) gives the distance between X and Y. 
 

Distance measure 

 

• These measures find the distance between points in a d-dimensional space, where each pattern is 

represented as a point in the d-space. 
 

• The distance is inversely proportional to the similarity. If d(X,Y) gives the distance between X and 

Y , and s(X,Y) gives the similarity between X and Y , then 

d(X, Y )  ∝ 

1  
S(X,
Y )  
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• The Euclidean distance is the most popular distance measure. If we have two patterns X and Y , 

then the euclidean distance will be 
 

 v D   
 

d2(X, Y ) = u (xK − yK ) 2 
 

uX  
 

 
t

K=1   
  

• The generalization of this equation gives the Minkowski distance which is 

 
D 

dM(X, Y ) = (
X

 

1 
 

| xK − yK |M) 
  

M 
 

K=1   
 

where m=1,2,...,∞  

• Depending on the value of m, we get different distance measures. 

 

Euclidean distance(ED) 
 

• When m=2 is substituted in Minkowski metric, we get the euclidean distance. 
 

• This is also called the L2 norm.  

• This can be written as 
 

 

 v D   
 

d2(X, Y ) = u (xK − yK ) 2 
 

uX  
 

 
t

K=1   
 

 

• Euclidean distance is popularly used in pattern recognition. This is because Euclidean distance is 

easy for human comprehension and ro-tation and translation invariant. 
 
 

Manhattan distance 
 

 

• When m=1 is substituted in the equation, we get the Manhattan or the city block distance. 
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• This is also called the L1 norm. 
 

• This can be written as 
 

 
D 

X 
d(X, Y ) = ( | xK − yK |)  

K=1 
 
 
 

L∞ norm or Max norm 
 

• Similarly, the L∞ norm is 

 

L∞ = max | xK − yK | f or k = 1, 2, ...d 

 

where d is the number of dimensions or features. 
 
 

Weighted distance measure 
 

• When some features are more significant than others, the 
weighted distance measure is used. 

 
• The weighted distance is as follows : 

 

 
D 

X 1 
d(X, Y ) = ( wK (xK − yK )M)M   

K=1 
 
 
 
 

5. The weight for each feature depends on its importance. 
 

6. The greater the significance of the feature, the larger the weight. 
 

7. The weighted distance measure using Euclidean distance(m=2) 
would be 
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d2(X, Y ) = w1 ∗  (x1 − y1)2 + w2 ∗  (x2 − y2)2 + ... + wD ∗  (xD − yD)2 

 
 
 

 

X A generalized version of the weighted distance is the squared Maha-lanobis distance(MD). Let a 

class be represented by N (µ, Σ), where µ is the mean and Σ is the covariance matrix, then the 

squared Maha-lanobis distance between a pattern X and the class is 
 

(X − µ)TΣ−
1(X − µ) 

 

If Σ = I(identity matrix), then MD=ED 

 

X As an example, consider If X = (5,3,7,5,1) and Y = (6,5,2,9,5), then 

 

Manhattan distance or L1 norm 
 
 

d(X, Y ) =| 5 − 6 | + | 3 − 5 | + | 7 − 2 | + | 5 − 9 | + | 1 − 5 |= 16 

 

 

Euclidean distance or L2 norm  
 

q 

d2(X, Y ) = (5 − 6)2 + (3 − 5)2 + (7 − 2)2 + (5 − 9)2 + (1 − 5)2 = 7.87 

 

L∞norm 

 

d∞(X, Y ) = max(1, 2, 5, 4, 4) = 5 

 

Weighted euclidean distance 
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Let the weight for the feature w1 be 0.5 
 

Let the weight for the feature w2 be 0.1 
Let the weight for the feature w3 be 0.3 
Let the weight for the feature w4 be 0.7 
Let the weight for the feature w5 be 0.4 

 
Then the weighted euclidean distance will be 

 

d(X, Y ) = 
 

q 

(0.5 ∗  (5 − 6)2) + (0.1 ∗  (3 − 5)2) + (0.3 ∗  (7 − 2)2) + (0.7 ∗  (5 − 9)2) + (0.4 ∗  (1 − 5)2) 

= 5.1 
 
 
There are other dissimilarity measures besides the metric distance mea-sure described above. 
 
Many of them are useful for image data or string data. 
 
Many of these measures do not exhibit all the properties of a metric and are therefore non-metric 
dissimilarity measures. 
 
 
One example of a non-metric measure is the squared Euclidean dis-tance. 
 

k-Median Distance 
 
The k-Median distance is a non-metric distance function. 
 
This finds the distance between two vectors. 
 
The difference between the values for each element of the vector is found. 
 
Putting this together, we get the difference vector. 
 
If the values in the difference vector are put in non-decreasing order, the kTH value gives the k-
Median distance. 
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If the two vectors are 
 
{p1, p2, ...pN} and {q1, q2, ..., qN}, 
 
Then the difference vector will be 
 
D = {| p1 − q1 |, | p2 − q2 |, ..., | pN − qN |} 
 
Then d(P,Q) = k-median (D) 
 
As an example, let us take 
 
 
P = (10, 56, 23, 32, 78, 99, 65, 83, 1 , 53) and Q = (34, 87, 94, 21, 49, 81, 23, 77, 34, 
61) 
 
 
Then the difference vector will be 
 
 
=(| 10 − 34 |, | 56 − 87 |, | 23 − 94 |, | 32 − 21 |, | 78 − 49 |, | 99 − 81 |, | 65 − 23 |, | 83 − 
77 |, | 1 − 34 |, | 53 − 61 |) 
= (24, 31, 71, 11, 29, 18, 42, 6, 33, 8) 
 
If D is arranged in non-decreasing order we get 
 
D’ = (6, 8, 11, 24, 29, 21, 31, 33, 42, 71) 
 
If k = 5, then d(P,Q) = 29 
 
Feature Extraction 
 
Feature extraction refers to the process of identifying and combining certain features of 
patterns. Given a collection F of features, the ex-tracted features are linear/non-linear 
combinations of elements of F . 
 
This is a pre-processing step of pattern recognition. 
 
Before pattern classification is carried, it is necessary to decide what attributes of the 
patterns are to be measured and recorded. 
 
The features chosen should be discriminating features of the pattern. 
 
It is an important stage of pre-processing, as the feature extraction influences the 
quality of the pattern classification carried out. 
 
Two methods explained in this module are : 
 
Fisher’s Linear Discriminant :  

 
This is used in supervised clas-sification. Supervised classification refers to 

classification being carried out where labeled training examples are available to learn 
the classifier. 
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Principal Component Analysis : This is an unsupervised learning activity. 
Unsupervised learning activity uses the underlying dis-tribution of the patterns to carry 
out classification. No labeled examples are available. A typical unsupervised learning 
activity is clustering. 

 
Fisher’s Linear Discriminant 
 
Fisher’s Linear Discriminant is used to map a d-dimensional data to one 

dimensional data using a projection vector V such that it maps a vector X to a scalar V T 
X ; note that V T X is a scalar. 

 
 
Classification is then carried out in the one dimensional space. 
 
Let us consider a two-class problem. 

 
If the mean of class 1 is m1 and the mean of class 2 is m2, and if v1 is 

proportional to the variance of class 1 patterns and v2 is proportional to the variance of 
class 2 patterns, then the Fisher’s criterion is 

 
J (V )  = |M1 − M2 |2 
V12 + V22 
 
J (V ) is the criterion function to be maximized and it is necessary to find V such 

that that J (V ) is maximized. 
 
• If there are n patterns, then the mean of the patterns is 
 
 

 
1 

N  
m

  = 
X

 XK 
 

  

 
n

 K=1  
 
If there are k classes, then the mean of the patterns of Class i is 
 
1 X 
 
mI = nI  XI ∈C LASS I XI 
 
 
The between class scatter matrix is 
 
 
K 
X 
=nI (mI  − m)(mI  − m)T 
 
I=1 
 
The within class scatter matrix is 
 
 

 K 
W

  = 
X     X    (XI  − mI )(XI  − 

mI )T 
 I=1 XI ∈C LASS I 
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The criterion function to be maximized is 
 

J 
(V )  = 

 (
V 

T B
 V ) 

 
   
(

V 
T W

  V ) 
 

   
 
The problem of maximizing J (V ) can be written as the following con-strained 

optimization problem. 
 
min −12 V T  ∗  B ∗  V 
 
s.t. V T  ∗  W ∗  V  = 1 
 
which corresponds to the Lagrangian 
 
L=−12 V T  ∗  B ∗  V + 12  ∗  λ ∗  (V T  ∗  W ∗  V − 1) 
 
From the KKT conditions1 
 
we can see that the following equation has to hold. 
 
B ∗  V  = λ ∗  W ∗  V 
 
This means that 
 
W −1 ∗  B ∗  V  = λ ∗  V 
 
Let v1, v2, ..., vD gives the generalized eigenvectors of B and W , which gives a 

projection space of dimension d. 
 
We need to get a projection space of dimension m < d giving the eigen-vectors 
 
 
VM =  (v1, v2, ..., vM ) 
 
The projection of vector XI  into a subspace of dimension m is 
 
= WDT X 

 
Principal Component Analysis(PCA) 
 
• Principal Component Analysis is a procedure by which the number of variables are 
reduced. 
 
• The attempt is to find a smaller number of variables which are uncor-related. 
 
• The first principal component is the most important and accounts for as much of the 
variability as possible. The second principal comes next etc. 
 
• The number of variables are reduced by projecting the data in the direction of 
maximum variance. 
 
• The method involves finding the eigenvectors and the corresponding eigenvalues of 
the covariance matrix. 
 
• If the eigenvectors are ordered in descending order of the eigenvalues, the first 
eigenvector gives the direction of the largest variance of the data. 
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• By excluding the directions giving very low eigenvalues, we can reduce the number of 
variables being considered. 
 
• If X = X1, X2 , ..., Xn is the set of n patterns of dimension d, the sample mean of the 
data set is 
 
1 n 
X 
m = n i=1 Xi 
 
 
 
 
The sample covariance matrix is 
 
• = (X − m) (X − m) 
•  
• C is a symmetric matrix. The orthogonal basis can be calculated by finding the 
eigenvalues and eigenvectors. 
 
• The eigenvectors gi and the corresponding eigenvalues λi are solutions of the 
equation 
 
C ∗  gi  = λi ∗  gi, i = 1, ..., d 
 
 
• The eigenvector corresponding to the largest eigenvalue gives the di-rection of 
the largest variance of the data. 
 
• By ordering the eigenvectors according to the eigenvalues, the directions along 
which there is maximum variance can be found. 
 
• If E is the matrix 
transform the data 

 
 
consisting of eigenvectors as row vectors, we can 
• to get Y . 
 

 
 = E(X − m) 
 
• The original data X can be got from Y  as follows : 
 
X = EtY + m 
 
• Instead of using all d eigenvectors, the data can be represented by using the first 
k eigenvectors where k < d. 
 
• If only the first k eigenvectors are used represented by EK , then 
 
 = EK (X − m) 
 
 
and 
 
X ′  = EKt Y + m 
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• This reconstructed X ′ will not exactly match the original data X . This shows that 
some information is lost when only the first k eigenvectors are considered. 
 
• By choosing the eigenvectors having largest eigenvalues, as little infor-mation as 
possible is lost. 
 
• At the same time, the dimensionality of the data is reduced so as to simplify the 
representation. 
 
• As an example, let us consider two patterns of class 1. The patterns are (2,2) 
and (3,1). Let us consider two patterns of class 2. The patterns are (5,4) and (7,4). 
 
 
The mean of the patterns will be 
• # 
4.25 
mean = 
2.75 
 
The covariance matrix is 
 
" # 
5.25 2.96 
C = 
2.96 2.25 
 
The eigenvalues of C are 
λ1 =  6.98 and λ2 =  0.52 
 
The first eigenvalue is very much larger than the second eigenvalue. 
 
The eigenvector corresponding to this is 
 
• # 
0.8633 
eigen1  = 
0.5046 
 
The pattern (2,2) gets transformed to 
 
• # 

h 
0.8633  
0.5045 i * 

−2.25 

= -2.32 

 

−0.75  
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Similarly, the patterns (3,1), (5,4) and (7,4) get transformed to -1.96, 1.71 and 2.57 . 
 
 
When we try to get the original data from the transformed, some in-formation gets lost. 
After transformation, pattern (2,2) becomes, 
8. # 

h 
0.8633  
0.5046 i * (-2.32) + 

4.25 

= 

 

2.75  
X # 

h −2.00  −1.17 i + 

4.25 

= 

 

2.75  

" 

2.25 

# 

   

1.58    
 
showing that there is some loss in information. 
 
 
 

Feature Selection 

 

• The features which are chosen to represent a set of patterns may 
be large or redundant in some way. In such cases, it may be good 
to reduce the features. This process is called feature selection or 
dimensionality reduction. 

 
• If the dimensionality is large, it is necessary to have a large training 

set to get a good classification accuracy. 
 

• This is due to the curse of dimensionality or peaking phenomenon.  
 
 
 

Classification  
accuracy  

 
 
 
 
 
 
 
 
 
 

 

number of features  
 

Figure 1: Illustration of curse of dimensionality 
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• This is illustrated in Figure 1. For a particular number of training 
patterns, up to a certain point, the increase in dimensionality leads 
to improvement in the classification accuracy. But after that, there 
is a reduction in the classification accuracy. 

 
• Besides, reducing the dimensionality, reduces the time required to 

find the class of a test pattern when using a classifier. 
 

• This may lead to a reduction in the classification accuracy. If it is 
not very much, then it might be worth doing feature selection which 
will lead to reduction in time and space requirement of classifiers. 

 

 

• If the features removed are not discriminatory features, it ensures that the classification accuracy does not decrease. 

 

Methods of Feature Selection 

 

• All the methods of feature selection involve searching for the best subset of features. 

• Generally after removing a feature or adding a feature, the resulting set of features is evaluated 

and the decision is taken as to whether to keep that feature or not.  

• The evaluation function is called the criterion function J. 

• The evaluation usually employed is the classification accuracy obtained on a validation set of patterns. 

• This can also be the classification error. If E is the % error, then the criterion function J = 100 - E. 

• It could also be based on classification accuracy and on the number of features used which are 

combined together in some way. If two subsets have the same classification accuracy then the 

subset which has a smaller number of features has a larger evaluation than the one with the 

larger number of features. 
 

Exhaustive search 

 

• In this method, all combinations of features are tried out and the cri-terion function J calculated. 

• The combination of features which gives the highest value of J is the set of features selected. 

• If the number of features is large, this method becomes prohibitively time consuming. 

• If the number of features is d and the number of required features is k, 
then the number of different combinations to be tried out to find the 

best set of features will be 

d 

!. 
 

k 
 

 

3 
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• For every combination of features X, the criterion function J(X) has 
to be calculated. 

 
• The combination of features which gives the best criterion value is 

chosen as the feature subset selected. 
 

• This method is a brute force method and hence gives the optimal 
so-lution. 

 
• Because of the time complexity for large feature sets, this method 

is impractical when the number of features goes up. 
 

Branch and Bound Search 

 

• The branch and bound method forms a tree where the root pertains 
to choosing all features. 

 
• The children of this node pertains to the combinations of features 

where one feature has been removed. From each of these children, 

we get the nodes where another feature has been removed and so on. 
 

• If there are d features and it is necessary to retain f features, then 
the height of the tree will be d − f . 

 
• A leaf node represents a combination of features. 

 
• Once a leaf node is reached, it can be evaluated and its criterion 

func-tion J found. 
 

• This value is stored as the bound b. 
 

• While evaluating the future branches, at anytime if the criterion 
value goes below the bound b, that branch is not further expanded. 

 
• When another leaf node is reached, if its J value is larger than b, b is 

updated and that combination of features is stored as the best so far. 
 

• The assumption made here is monotonicity. In the tree generated, 
it is assumed that the parent node has a higher criterion function 
value as compared to its children. This means that a feature set 
has a larger J value as compared to any of its subsets. 

 

4 
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{f1,f2,f3,f4}   

A E J=26 H   J=34 

{f2,f3,f4} {f1,f3,f4} {f1,f2,f4}  
 
 
 
 
 

{f3,f4} {f2,f4} {f2,f3} {f1,f4} {f1,f3} {f1,f2} 
 

B C D F G I  

 
 

J=17 J=28 J=23 
  J=20 

 

   
 

 

Figure 2: The solution tree for branch and bound with d=4 and f=2 
 

 

• The tree generated by the branch and bound algorithm for a 
particular problem is shown in Figure 2. 

 
• When the left-most node B is reached, which corresponds to the 

feature subset {f3,f4}, let the evaluation of the node J be 17. 
 

• At this stage, since this is a leaf node, the bound b = 17. 
 

• The next node generated is C having a J value of 28. 
 

• Since this is greater than the value of b, the bound b is updated to 
28 and the best subset so far is {f2,f4}. 

 
• The next node generated is D corresponding to the feature subset 

{f2,f3}. 
 

• This has a J value of 23 which is smaller than b, so b remains unchanged. 
 

• The next node generated is E which is found to have a J value of 26. 
 

• Since the J value of this node is less than b, this branch is not 
expanded any further. 
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• This means that the branches F and G are not generated.  

• The next node to be generated is H which has a J value of 34.  

• Since 34 is greater than b, this node is expanded to give I.  

• The J value of I is 20 which is lower than the bound. 
 

• Now the entire tree is completed and the node with the lower bound b as the criterion function is 

the best subset which is {f2,f4}. This is based on the fact that we are selecting 2 out of 4 features. 

 

Relaxed Branch and Bound 
 

• In the Relaxed Branch and Bound, the principle of monotonicity is used but is relaxed. 

 

• A margin m is used and if the J value of any node being considered becomes less than the bound b by a 

value less m, it is still considered for expansion and one of its children can become the optimal subset.  

• Consider Figure  2. Let the margin m = 5. 
 

• When node E is being considered, the bound b = 28. At E, J = 26, which is lower than b. This is 

not expanded further, in the branch and bound method. But in the relaxed branch and bound, 

since the difference between its criterion 26 and the bound 28 is less than the margin, it is 

expanded further. Now if F has a criterion of 29, then the subset chosen would be {f1,f4} instead 

of {f2,f4}.  

• In this method, the principle of monotonicity is relaxed. 
 

Selecting Best Individual Features  

9. In this method, each individual feature is evaluated individually. 
 

10. If f features are to be chosen from d features, after evaluation, the best f features are 

chosen. 

 

11. This method is the simplest method for finding a subset of features and is 

computationally fast since different combinations of features need not be evaluated. 
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X However, the subset of features chosen is not likely to give good results 

since the dependencies between features is not taken into account. 
 

X It is necessary to see how the combination of features perform. 
 

X Consider the example where there are 6 features. It is necessary to 
choose two features out of the six features. After evaluation of 
individ-ual features if the evaluation is as follows : 

 

 

f
1 = 45 

f
2 = 56 

f
3 = 60 

f
4 = 22 

f5 = 65 f6 = 34 
 
 

 

The two features giving the highest criterion function value are 

features f5 and f3. Therefore the subset to be chosen is {f3, f5} , 
 

 

Sequential Feature Selection 
 
 
Sequential Methods 

 

In these methods, features are either sequentially added or deleted from feature 

subsets, at each step evaluating the feature subset chosen. 

 

These methods either start from an empty set and expand the feature subset at every 

iteration, or start from the set containing all features and contract the feature subset at 

each iteration. 

 

At each step, the significant feature is determined to add to the subset or to delete from 

the subset. 

 

Unlike the exhaustive search and branch and bound method, this method is not 

guaranteed to produce the optimal solution since all subsets are not examined. 

 

These methods suffer from the nesting effect. 

 

Sequential Forward Selection(SFS) 
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This method adds one feature at a time. 

 

At every iteration, one feature is added. The most significant feature is selected at each 

iteration. 

 

This is the bottom-up approach since the search starts with an empty set and keeps 

adding features. 

 

Once a feature is chosen, it cannot be deleted. This is called the nest-ing effect. 

 

Consider after the kth iteration, there will be k features in the subset. 

 

At this point, the significance of a feature i (which is not among the k features already 

selected) Si is 

 

Si  = J (Fk fi ) − J (Fk ) 

 

where Fk is the set of k features already selected and fi is the new feature being 

selected. 
 

 

At every stage, the most significant feature is selected to be added to the subset. 

 

This is the feature j which has the maximum value of significance. 

 

To illustrate this method, let us take a set of patterns with 4 features and two classes. 

The patterns in the training set are given below : 

 

 

Training data Class 1 : 

 

1-4,5-8,1-4,9-12 Pattern 1 : (5,7,3,12); Pattern 2 : (1,4,2,10) 

 

Pattern 3 : (3,8,1,8); Pattern 4 : (2,4,1,11) 

 

2 2.24 3 2.83 Class 2 : 

 

5-8, 1-4,9-12,5-8 Pattern 5 : (6,2,10,5); Pattern 6 : (4,3,8,5) 
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Pattern 7 : (7,1,12,9); Pattern 8 : (8,4,11,9) 

 

 

Let us also have a validation set as follows : 

 

Validation data Class 1 : 

 

 

Pattern 1 : (3,7,3,9); Pattern 2 : (4,6,1,12) 

 

Pattern 3 : (2,5,3,10); Pattern 4 : (3,7,1,12) Class 2 : 

 

Pattern 5 : (7,2,12,6) ; Pattern 6 : (5,1,10,8) 

 

Pattern 7 : (6,3,11,6) ; Pattern 8 : (7,4,9,7) 

 

 

Now we have a feature set which is a null set. Let F be the feature set. 

 

Now we consider one feature at a time to find the most significant feature. 

 

Let us classify the training set using the validation set using the first feature only. Here 6 

out of 8 patterns are classified correctly. 
 

 

Let us consider only feature 2. Here also 6 out of 8 patterns are 
classi-fied correctly. 

 

 

Let us now consider only feature 3. Here 3 out of 8 patterns are 
clas-sified correctly. 

 

Considering feature 4 only, 5 out of 8 patterns are classified correctly. 
 
 

Since feature 3 gives the maximum number of correct 
classifications, feature 3 is taken as the first feature selected. 

 

We then have F = {3} 
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We now have to try out the feature sets {3, 1}, {3, 2} and {3, 4} and 
find the feature set giving the most number of correct 
classifications. 

 
Then keeping these two features, the third feature is found and so on. 

 

Sequential Backward Selection(SBS) 
 

• This method starts with all the features as the feature subset to be 
considered. 

 
• At every iteration, one feature is discarded.  
• The feature to be discarded is the least significant feature. 

 
• This is the top-down approach since it starts with the complete set 

of features and keeps discarding features at each iteration. 
 
 

• Once a feature is discarded, it cannot be selected again. Hence 
this method also suffers from the nesting effect. 

 

• At every stage, the feature j which has the minimum value of signifi-

cance is selected. 

• To illustrate this, consider the example given in the previous 

section. We start with the entire feature set. So the feature set 

considered is F = {1, 2, 3, 4}. From this feature set, one feature is 

removed at a time to get {2,3,4},{1,3,4} and {1,2,4}. Each of these 

feature sets is used to classify the training patterns and the feature 

set which misclassifies the most number of patterns is considered 

and the concerned feature is removed. This feature is the least 

significant feature. We now have three features in the feature 

subset. From this the least significant feature is removed to get a 

feature set of 2 features. If we are interested in retaining 2 out of 

features, we stop at this point. 
 

Plus l-take away r Selection 

 

• This method was introduced to take care of the nesting effect 
which has been described in the previous methods. 

 

• In this method, at every iteration, l features are added and r 
features are deleted. 
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• The l features to be added are the most significant features like in 
forward selection. 

 

• The r features deleted are the least significant features like in the 
back-ward selection. 

 

• Choosing the values of l and r is a difficult task and may have to be 
done by trial and error. 

 

• To take care of the problem of what values to use for l and r, the 
floating search methods were introduced. 

 

12. For example, if there are 10 features in the patterns, then if l 

is 3 and r is 1, then starting with the feature set F = φ, first 3 

features are added. For each feature added, the most significant 

feature is chosen. At the end of this, F will have three features. The 

next step is to exclude one of the features chosen. The least 

significant feature of the three features is removed and at this stage 

F has two features. Again three features are added, choosing the 

most significant features. Then again one feature is removed and 

so on. Choosing the values of l and  r arbitrary may not give the 

optimal feature subset. Choosing l and r to get the optimal subset is 

a difficult problem. 

 

Sequential Floating Search 
 

13. In this method, there is no necessity to specify the l and r values. 
 

14. The number of forward steps and backward steps to be 
taken is decided dynamically so that the criterion function is 
maximized. 

 
 

15. The size of the subset of features keeps on increasing and 
decreasing till the search is stopped. Hence it is called the ‘floating’ 
search method. 

 

Sequential Floating Forward Search(SFFS) 

 
This method starts with an empty set. To this set is added the most 
significant feature. At every stage, after adding a feature, the least 
significant feature is removed conditionally. This means that if the 
feature subset after removing the feature is not the best subset 
found so far of that size, the feature is added back again. 
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The algorithm is given below. 
 
k=0 
Add the most significant feature to the subset and set k=k+1 
 
Conditionally remove the last significant feature. If the subset of size k-1 
resulting from the removal is the best subset of size k-1, then let k=k-1 and go to 
Step 3 else return the feature removed and go to Step 2. 
 
If the total number of features d is large and the size of the subset to be found f 
is small, it is good to use the SFFS method since it is started from the empty set. 
 
As an example, consider a dataset with 10 features. First we start with F = φ. 
The most significant feature is found. If it is 5, then F = {5}. Then according to 
Step 3, we need to conditionally remove 5 and check if the criterion improves. In 
this case, let there be no improvement by removing 5 so it is retained. Then 
again the most significant feature is 

found. Let it be 7. Then F = {5, 7}. Let the least significant feature in 

5 and 7 be 7. If there is no improvement in criterion value by 

removing 7, it is retained. Then the next most significant feature is 

found. Let it be 2. Then F = {5, 7, 2}. Now if the least significant 

feature in F is 7, we need to check if the criterion improves when 7 

is removed. Let there be an improvement in F , then F = {5, 2}. The 

next most significant feature is found and added to F and so on. 

This process is repeated till we have the number of features we 

want. 
 

Sequential Floating Backward Search 
 
This method starts with all the features being considered. One feature is 
removed at each stage and the most significant feature is added. If the subset 
gives the best performance of all subsets of its size, the feature added is 
retained otherwise it is discarded. 
 
The algorithm is given below : 
 

 

 k=d 
 

 Remove the least significant feature from the subset of size k. 
Let k=k-1. 

 
 Conditionally add the most significant feature from the features 

not in the current subset. If the subset generated is the best 
subset of size k+1 found so far, retain the feature, let k=k+1 
and go to Step 3. Else remove the conditionally added feature 
and go to Step 2. 
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This method is suitable when only a few features need to be removed. 
 
As an example, if we take a dataset having 10 features, we start with the feature 

set F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We now have to find the least significant 

feature. Let it be feature 9. F then becomes F = {1, 2, 3, 4, 5, 6, 7, 8, 10}. Then 

we find the most significant feature in the features absent in F . Here it is only 

feature 9. Then we try to see if the criterion improves if 9 is added. Here let the 

criterion not improve and 9 is not added again. Then from F the least significant 

feature is found. Let it be 4. Then 4 is removed from F giving F = {1, 2, 3, 5, 6, 7, 

8, 10}. Then we find the most significant feature among 4 and 9 and see if the 

criterion improves by including that feature. Let it not improve and we again find 

the least significant feature in F . Let it be feature 1. So feature 1 is removed to 

give F = {2, 3, 5, 6, 7, 8, 10}. If the most significant feature among 9,4 and 1 is 4 

and adding 4 to F gives a better criterion function then 4 is again added to F to 

give= {2, 3, 4, 5, 6, 7, 8, 10}. This process is continued to get the feature subset 

of the size required by us. 

 

Max-Min approach  
This method considers two features at a time. 
 
At each iteration, it includes one feature into the feature subset de-pending on 

the absolute difference between the criterion of using the new feature with the 
feature subset and the criterion of the feature subset alone. 
 
Since only two features are considered at a time, it is not so computa-tionally 
intensive. 

 

Since it does the calculations in two dimensions and not in multi- di-mensional 
space, the results obtained are unsatisfactory. 
 
 
At a point in time, if F ′ is the subset of features so far selected, it is now 
necessary to find the feature fj to be included. 
 

The difference between the criterion value of using the feature fj  along  
with F ′ and the criterion value of using only F ′ is found. The absolute value of 
this measure is called δJ (fj , F ′). 
 
Therefore we get 
 

δJ (fj , F ′) =| J (fj , F ′) − J (F ′) | 
 
 

The feature fj chosen as the next feature is one which satisfies max∀ fj 

min∀F ′ δJ (fj , F ′) 
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X As an example, suppose we have three features f1 , f2 and f3 . Consid-ering f1 , if the criterion 

function value difference between using only f1 and other features are 
 

J(f1, f2)=20; J(f1 , f3)=25; J(f1, f4 )=30; 
 
 

Similarly, if the criterion function value difference between using only f2 and other features are 
 

J(f2, f1)=5; J(f2 , f3)=40; J(f2 , f4)=35 

 

If the criterion function value difference between using only f3 and other features are 
 

J(f3, f1)=60; J(f3 , f2)=10; J(f3, f4 )=25 

 

If the criterion function value difference between using only f4 and other features are 
 

J(f4, f1)=20;J(f4 , f2)=70;J(f4, f3 )=15    

Considering f1 and other features, the minimum value of is J(f2 , f1)=20. 

Considering f2 and other features, the minimum value of is J(f2 , f1)=5. 
Considering f3 and other features, the minimum value of is J(f3 , f2)=10. 
Considering f4 and other features, the minimum value of is J(f4 , f3)=15. 

The maximum of these four values is for J(f2 , f1). Therefore the fea-ture chosen is f1 . 
 

Stochastic Search Techniques  

5. These methods have one or more candidate solutions.  

6. Each candidate solution gives the feature subset selected. 
 

7. The candidate solution is a binary string where each element represents one feature. 
 

9 
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 A 0 in the candidate solution represents the absence of a 
feature and a 1 represents the presence of a feature in the selected 
subset. 

 
 

 Each string has an evaluation which depends on the 
performance of the subset of features on a training and validation sets. 
This evaluation is called the fitness function.  

 In the Genetic algorithm, the initial population is formed at random. 
 

 The next generation is formed by using the operators of 
selection, crossover and mutation on the population. 

 

 A string with a higher fitness has a higher probability of being 
selected for the next generation. 

 

 Crossover involves taking two strings, finding a crossover point 
and exchanging the elements of the two strings which occur to the 
right of the crossover point. 

 

 Mutation involves choosing a bit and changing it from 0 to 1 or 
from 1 to 0. 

 

 As the iterations increase, strings with higher average fitness 
will be formed. 

 
 The string with the highest fitness will be the final solution.  
 Some of the other stochastic search techniques are  

 Simulated Annealing 
 Tabu search 

 
 
 
 
 

Nearest Neighbour Classifier 
 

Nearest neighbour classifiers 

 

• This is amongst the simplest of all classification algorithms in 
super-vised learning. 

 

• This is a method of classifying patterns based on the class label of 
the closest training patterns in the feature space. 

 

• The common algorithms used here are the nearest neighbour(NN) 
al-gorithm, the k-nearest neighbour(kNN) algorithm, and the 
modified k-nearest neighbour (mkNN) algorithm. 
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• These are non-parametric methods where no model is fitted using 
the training patterns. 

 

• The accuracy using nearest neighbour classifiers is good. It is 
guaran-teed to yield an error rate no worse than twice the Bayes 
error rate (explained in Module 10) which is the optimal error rate. 

 

• There is no training time required for this classifier. In other words, 
there is no design time for training the classifier. 

 

• Every time a test pattern is to be classified, it has to be compared 
with all the training patterns, to find the closest pattern. This 
classifica-tion time could be large if the training patterns are large in 
number or if the dimensionality of the patterns is high. 

 

Nearest neighbour algorithm 
 

• If there are n patterns X1, X2, ..., XN in the training data, X and a 
test pattern P, 

 
 

If XK is the most similar pattern to P from X, then the class of P is 
the class of XK . 

 
• The similarity is usually measured by computing the distance from 

P to the patterns X1, X2, ..., XN. If D(P, XI) is the distance from P to 
XI, then P is the assigned the class label of XK where 

 
 

D(P, XK ) = MIN{D(P, XI)} 

 

where i = 1 ... n 

 

 

k-Nearest Neighbour (kNN) classification algorithm 
 

• An object is classified by a majority vote of the class of its neighbours. 
 

• The object is assigned to the class most common amongst its K nearest neighbours. 
 

• If k=1, this becomes the nearest neighbour algorithm. 
 

• This algorithm may give a more correct classification for boundary patterns than the NN algorithm. 

 

• The value of K has to be specified by the user and the best choice depends on the data. 

 

• Larger values of K reduce the effect of noise on the classification. The value of K can be arbitrary 

increased when the training data set is large in size. 
 

• The K value can be chosen by using a validation set and choosing the K value giving best accuracy on the validation set. 
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• The main disadvantage of kNN algorithm is that it is very time con-suming especially when the training data is large. 
 

 

• To overcome this problem, a number of algorithms have been proposed to access the k nearest patterns as fast as possible. 
 
 

Modified k-Nearest Neighbour (mkNN) classifier 

 

• The contribution of the neighbours to the classification is weighted according to its distance from the test pattern. 
 

 

• Hence, the nearest neighbour contributes more to the classification de-cision than the neighbours further away. 
 
 

• One weighting scheme would be to give each neighbour a weight of D
1 , where d is the distance from P to the neighbour. 

 

• Another weighting scheme finds the weight from the neighbour as 
WI = (

 1K  1 if DK = D1 
 

  D −D I 
if DK =6 D1 

 

 

 

K    

 D −D   
 

 

where i=1,...,k . 
 

• The value of WI varies from 1 for the closest pattern to 0 for the farthest pattern among the k closest patterns. 

 

• This modification would mean that outliers will not affect the classifi-cation as much as the kNN classifier. 
 

Example 
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Figure 1: Two class problem 

 

Consider the two class problem shown in Figure 1. There are four pat-terns in Class 1 marked as ’X’ and there 

are five patterns in Class 2 marked as ’+’. The test pattern is is P. Using the nearest neighbour algorithm, the 
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closest pattern to P is X1 whose class is 1. Therefore P will be assigned 
to Class 1. 

 

If kNN algorithm is used, after X1, P is closest to X6 and X7. So, if 
k=3, P will be assigned to Class 2. It can be seen that the value of k is 
crucial to the classification. If k=1, it reduces to the NN classifier. In this 

case, if k=4, the next closest pattern could be X2. If k=5 and X3 is closer 

to P than X5, then again due to majority vote, P will be assigned to Class 
1. This shows how important the value of k is to the classification. If P is 
an outlier of one class but is closest to a pattern of another class, by 
taking majority vote, the misclassification of P can be prevented. 
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Figure 2: Another two class problem 

 

For example, if we consider Figure 2 we can see that the test pattern 

P is closest to X5 which belongs to Class 1 and therefore, it would be 

classified as belonging to Class 1 if NN classifier is used. X5 is an outlier 
of Class 1 and it can be seen that classifying P as belonging to Class 2 
would be more meaningful. If kNN algorithm is used with k=3, then P 
would be classified as belonging to Class 2. 

 

Using mkNN, the classification depends on the distances of the closest 
patterns from the test pattern. In the kNN algorithm, all the K patterns 

 

 

5 
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will have equal importance. In mkNN, the closest pattern is given more 

significance than the farthest pattern. The weightage given to the class of the 

first closest pattern is more than for the second closest pattern and so on. 

 

For example, if the 5 nearest neighbours to P are X1, X2, X3, X4 and 

X5, where D(X1, P ) = 1, D(X2, P ) = 2, D(X3, P ) = 2.5, D(X4, P ) = 4 and 

D(X5, P ) = 5, and if X1 and X4 belong to Class 1 and X2, X3 and X5 belong 

to Class 2, then the weight given to Class1 by X1 will be 

 

W11 = 1 

 

The weight given to Class 1 by X4 will be 
 

W14 = 5−
4 = 0.25 

5−1 

 

The total weight of Class 1 will be 

W1 = W1 + W2 = 1.0 + 0.25 = 1.25 

 

The weight given to Class 2 by X2 will be 
 

W22 = 5−
2 = 0.75 

5−1 
 

The weight given to Class 2 by X3 will be 
 

W23 = 5−
2.5 = 0.625 

5−1 

 

The weight given to Class 2 by X5 which is W25 will be 0 since it is 
the farthest of the 5 neighbours. 

 

The total weight of Class 2 will be 

 

W2 = W22 + W23 + W25 = 0.75 + 0.625 + 0 = 1.375 

 

Since W2 > W1, P is classified as belonging to Class 2. 

 

If we consider Figure 1, the closest points to P are X1, X6, X7, X2 and X5. 

If the distances from P to X1, X6, X7, X2 and X5 are 0.3, 1.0,1.1,1.5 and 

 

6 
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1.6, then calculating the weight given to the two classes 

 

The weight given to Class 1 by X1 will be 

 

W11 = 1 

 

The weight given to Class 1 by X2 will be 
 

W12 = 1.6
−
1.5 = 0.077 

1.6−0.3 

 

The total weight of Class 1 will be 

 

W1 = W11 + W12 = 1 + 0.077 = 1.077 

 

The weight given to Class 2 by X6 will be 
 

W26 = 1.6
−
1.0 = 0.462 

1.6−0.3 
 

The weight given to Class 2 by X7 will be 
 

W27 = 1.6
−
1.1 = 0.385 

1.6−0.3 

 

The weight given to Class 2 by X5 which is W25 is 0, since X5 is the 
farthest of the 5 neighbours. Then the total weight for Class 2 will be 

 

W2 = W26 + W27 + W25 = 0.462 + 0.385 + 0 = 0.847 

 

Since W1 > W2, P is classified as belonging to Class 1. 

 

One point to be noted here is that while kNN algorithm classifies P as 
belonging to Class 2, mkNN algorithm classifies P as belonging to Class 
1. It can therefore be seen that the classification decision using kNN and 
mkNN may vary. 
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Soft Nearest Neighbour Classifiers 
 

 

Fuzzy kNN Algorithm 

 

• In Fuzzy kNN Algorithm, each pattern belongs to every class with a 
membership value in interval [0,1]. 

 
• The membership value of each pattern to each class depends on 

the class of its k neighbours. 
 

• The k neighbours of a pattern are found. The membership of the 
pattern to the classes of the k neighbours is calculated depending 
on the distance of the point to the k neighbours. 

 
• The membership value of this pattern to the classes to which the k 

neighbours do not belong will be zero. 
 

• Let A = 
K 1 

   
 

µ
ij ( 

  

) 
 

   
 

2  
 

 

d(P, Xj ) 

 

 

  

j=1 M−1  
 

 

 

Let B = 
K 1 

 
 

( )   
 

 
 

2 

j=1  d(P, Xj ) M−
1  

 
 

 

• Then, a new sample P has membership µiP for class i which is 

given by Then µiP = B
A 

µij gives the membership in the ith class of the jth vector of the 
training set. 

 
• The membership value of the pattern for every class is calculated. 

 
• The pattern is assigned to the class to which it has the highest 

mem-bership value. 
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• The value of m can be 2,3,...etc. since m=1 will lead to the value of the 

power being ∞. In the numerator, weightage is only given to the k 

neighbours of the point. The weightage to each neighbour depends on 

the distance of the neighbour from the point. The closest neigh-bour 

gets the largest weightage, then the next neighbour etc. As m is 

increased, the weightage given to further neighbours comes down. 
 

Example 
 

Consider a test point P which is at a distance of 1(unit) from the closest 
point. This pattern is of Class 1. P is at a distance of 2 from the next 
closest point which belongs to Class 2. P is at a a distance of 3 from the 

next closest point which is of Class 3. P is at a distance of 4 from the 
next closest point which is of Class 1. P is at a distance of 5 from the 5th 
closest point which is of Class 2. Let there be 5 classes. Let m=2.  

Then the membership value of P to Class 1 will be 
 

      1 
+ 

1       
 

µ1P  = 
     1

2 4
2      = 0.7259   1 + 1  + 1 + 1 + 1  

 

12 22   32 42 52   
  

The membership value of P to Class 2 will be 
 

      1 
+ 

1       
 

µ2P  = 
     2

2 5
2      = 0.1981   1 + 1  + 1 + 1 + 1  

 

1
2 2

2   3
2 4

2 5
2   

  

The membership value of P to Class 3 will be 
 

      1       
 

µ3P  = 
    3

2      = 0.0759   1 + 1 + 1 + 1 + 1  
 

1
2 2

2 3
2 4

2 5
2   

  

The membership value of P to Class 4 will be 

 

µ4P  = 0 since none of the closest 5 neighbours comes from Class 4. 

 

The membership value of P to Class 5 will be 

 

µ5P  = 0 since none of the closest 5 neighbours comes from Class 5. 

 

Since the membership value of P with respect to Class 1 is the 
highest, P is assigned to Class 1. 
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Figure 1: Three class example set 
 
 

As another example, let us consider the three-class problem shown in 

Figure 1. The test pattern P is closest to the pattern X3. The next closest 

pattern is X4. The next closest pattern is X7. The distances from P are 

are 1.0, 1.2 and 1.6 from X3, X4 and X7 rsespectively. We are looking at 
k = 3 or the three closest patterns are being considered. Then the 
membership value for Class 1 will be 

 
     1     

 

µ1P  = 
   1

2    = 0.4796   1 + 1 + 1  
 

1
2  1.2

2 1.6
2   

  

The membership value for Class 2 will be 
 

     1      
 

µ2P  = 
   1.2

2    = 0.3331   1 + 1 + 1  
 

1
2  1.2

2   1.6
2   

  

The membership value for Class 3 will be 
 

     1      
 

µ3P  = 
   1.6

2    = 0.1873   1 + 1 + 1  
 

1
2  1.2

2   1.6
2   

  

Since µ1P  is greater than µ2P  and µ3P , P is assigned to Class 1. 

 

r-Near Neighbours 
 

• Instead of looking at k nearest neighbours to the test sample P, we look 
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Figure 2: Two class example set 
 
 

at all samples falling within a distance r from P. 
 

• From P, consider a ball of radius r centred at P . 
 

• All samples falling in this ball are considered and the majority class 
label of these samples is considered to be the class of P. 

 
• If no samples fall within the ball of radius r, then the majority class 

of the entire data is considered or the possibility of the pattern 
being an outlier is considered. 

 
• In this algorithm, distances of the neighbours of a point P are 

consid-ered and not the number of neighbours. 
 

Example 

 

• Consider Figure 2. If P is the test pattern then a circle of radius r is 
drawn from P. 

 

• It can be seen that five points, X5, X6, X7, X8 and X9 fall within the 
circle of radius r from P. The majority class of these five points is 
Class 1 labelled X and therefore P is assigned to Class 1. 
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Figure 3: Outlier using r-Near Neighbours 
 

 

• This algorithm is distance-based. NN, kNN and mkNN find the k 
nearest neighbours and use their labels to find the class of P. Here 
the number of patterns considered depends on the number of 
patterns within a fixed distance from P. 

 
• If P is an outlier and there are no patterns within the ball of radius, 

then it is easy to identify that P is an outlier. 
 

• This can be seen in Figure 3. Here, if a circle of radius r is drawn 
with P as the centre, no patterns fall within this circle. This will show 
that P is an outlier. It can be treated as a outlier and not assigned 
to any class. Using NN, kNN and mkNN, it would be classified as 
belonging to Class 2. 

 

Drawbacks of Nearest Neighbour Classifiers 

 

• The biggest drawback of nearest neighbour classifiers is the time 
taken to find the nearest neighbours of a test pattern P. 

 
• All the training data set is used to classify each test pattern. 
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 If the training data is large, storing of the entire training data leads 
to increase in the space complexity. 

  
 If the training data is large, the time required to find the nearest 

neigh-bours of a test pattern increases. 
  

 If there are n training samples from a d-dimensional space, the 
space complexity will be O(nd). 

  
 The time complexity to find the nearest training pattern to P will be 

also O(nd). 

  
 Due to this, work has been done to take care of this problem by 

con-densation of the training data and also use of efficient 
algorithms to find the nearest neighbour of a test pattern. 

  
 These aspects are studied in Module 8 and Module 9. 

 
 

 

 Use Fuzzy kNN algorithm to classify P using m = 2 and the data 
given problem 1. 

 
 Use the r-Near Neighbours classifier with r = 1.45, 5 neighbours, 

and data in problem 1 to classify P. 
 
 
 
 
 

Efficient Nearest Neighbour Classifier 

 

Efficient Algorithms for Nearest Neighbour Classifiers 

 

• While the nearest neighbour algorithm gives good results and is robust, it is tedious to use when the training data is very large. 
 

 

• Finding the nearest neighbour to a test pattern requires the computa-tion of the 

similarity(dissimilarity) between the test pattern and every training pattern. If there are n 

patterns with dimensionality d, this will be O(nd). 
 

• If the number of training patterns is very large or if the dimensionality of the patterns is large, this will be a very time-consuming 

exercise. 

 

• Another disadvantage is that the entire training set should be stored and utilized to find the most similar pattern. 
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• The solutions to this problem are as follows : 
 

– Some pre-processing is carried out on the training set so that the process of finding the nearest 

neighbour or finding k-neighbours is easier. These algorithms are called efficient algorithms. 
 

– The number of training patterns is reduced. This is done so that it does not cause the 

classification accuracy to come down too much. This is called prototype selection. 
 

– The dimensionality of the patterns is reduced. The attributes which are less significant are 

removed and only the attributes which are significant are retained for classification. This 

process is called feature selection.  

• This module discusses the efficient algorithms. 
 

• Prototype selection is discussed in the next module. 
 

Principle of Efficient Algorithms 
 

• All the methods require some pre-processing of the training set. 
 

• This pre-processing involves putting some ordering in the data or ar-ranging it in some way so as 

to be able to access the nearest neighbour easily. 
• Even though the pre-processing requires some time, it needs to be 

done only once. 
 

• The pre-processed data can then be used for locating the nearest 
neigh-bour of a test pattern. 

 
• Besides speeding up the process of finding the nearest 

neighbour(s), there maybe saving in space also depending on the 
way in which the data is stored. 

 

Branch and Bound algorithm 

 

• The patterns are clustered together so that points which are close 
to-gether form a cluster. 

 
• These first level clusters are again divided into clusters and this is 

done recursively, till each cluster has only one point. 
 

• For every cluster j, the center mj and the radius rj are calculated 
and stored. 

 
• To find the closest pattern to a test pattern P , the following steps 

are followed : 
 

 For every cluster calculate aj  = (d(P, mj ) − rj ). 
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 All points in the cluster j will have a distance from P which is 

more than aj .  

 Choose the cluster k which has the smallest ak and find the 

dis-tances from P to the points in the cluster. Let the smallest 
dis-tance be dmin. 

 

 We can say that for a cluster j, if aj ≥ dmin, then that cluster 
need not be searched.  

 Only the clusters j which have aj  < dmin need to be searched. 
 

• Since all clusters need not be searched, there is considerable improve-

ment in computation as compared to the nearest neighbour algorithm. 

Example       

Consider the following set of patterns :    
X

1 = (1, 1, 1, 1); 
X

2 = (1, 2, 1, 1); 
X

3 = (2, 2, 2, 1); 
X4 = (2, 2, 2, 1); X5 = (1, 2, 2, 1); X6 = (1, 2, 5, 2); 
X7 = (2, 1, 6, 2); X8 = (2, 2, 5, 2); X9 = (1, 2, 6, 2); 
X

10 = (2, 2, 6, 2); 
X

11 = (4, 1, 2, 3); 
X

12 = (4, 2, 1, 3); 
X

13 = (5, 2, 2, 3); 
X

14 = (6, 1, 2, 3); 
X

15 = (5, 1, 1, 3);  
Each pattern consists of four values. The first three are the three 

features and the fourth value gives the class of the pattern. The first step is 

to cluster the points. Let the points X1, X2, X3, X4 and X5 form the first 

cluster. Let the patterns X6, X7, X8, X9 and X10 form the second cluster and 

the points X11, X12, X13, X14 and X15 form the third cluster. At the next level, 

each cluster has to be partitioned into subclusters. Let patterns X1, X2 and 

X3 form cluster 1a and patterns X4 and X5 form cluster 1b. Similarly let 

patterns X6, X7 and X8 form cluster 2a and patterns X9 and X10 form cluster 

2b. Further, let patterns X11, X12 and X13 form cluster 3a and patterns X14 

and X15 form cluster 2b. At the next level, each pattern is taken to belong to 
a subcluster. This is shown in Figure 1.  
The centre of cluster 1 is (1.4,1.8,1.6) and the radius is 0.98.  
The centre of cluster 2 is (1.6,1.8,5.6) and the radius is 0.98.  
The centre of cluster 3 is (4.8,1.4,1.6) and the radius is 1.33. 

Let us take a point P = (4,4,3) as the test point from which we are to 
find the closest pattern. 

At the first level, we have to calculate aj  for each cluster j. For cluster 1, 

d(P, m1) = 3.94 

a1  = 3.94 - 0.98 = 2.96 

For cluster 2, 

d(P, m2) = 4.17 

a2  = 4.17 - 0.98 = 3.19 

For cluster 3, 

d(P, m3) = 3.06 
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Figure 1: Clusters and subclusters for Branch and Bound technique 

 

a3  = 3.06 - 1.33 = 1.73 

 

Since a3 is smaller than a1 and a2, the subclusters of cluster 3 are searched. 

 

The centre of cluster 3a is (4.33,1.66,1.66) and the radius is 0.808.  
The centre of cluster 3b is (5.5,1,1.5) and the radius is 0.707. 

 

For cluster 3a, 

d(P, m3a) = 2.70 

a3a  = 2.70 - 0.808 = 1.89 

 

For cluster 3b, 

d(P, m3b) = 3.67 

a3b  = 3.67 - 0.707 = 2.96 

 

Since a3a is smaller than a3b , cluster 3a is searched. Cluster 3a is 

searched by finding the distance from P to the points X11, X12 and X13. X13 is 
found to be closest among these points to P. This sets the bound dmin to be the 
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distance from X13 to P which is 2.44 . Since a1 and a2 are greater than dmin, 

they need not be searched and therefore X13 is the closest neighbour of P. 
 

Cube Algorithm 

 

• This algorithm takes a hypercube of side l units around the test 
point P. 

 

• This implies that a distance of d = 2
l is taken on both sides of P in 

every dimension to form the hypercube. Let ǫ = a small value. 
 

• In the case where there are only two dimensions, the hypercube 
will be a square. 

 
• Count the number of points m in the hypercube. 

 
• If m < k, increase l appropriately so as to include more points. From 

the test point P, the distance d can be increased to give d = d + ǫ 
on both sides. 

 
• Repeat till there are k points in the hypercube. Only the newly 

included portion needs to be changed. 
 

• If m > k, decrease l so that less points are included in the 
hypercube. From the test point P, the distance d can be decreased 
to give d = d −ǫ on both sides. 

 
• Repeat till there are k points in the hypercube. Only the newly ex-

cluded portion of the hypercube needs to be changed.  
 

Example 

 

Consider the example taken for the branch and bound algorithm. We have 

15 patterns as given belonging to three classes. The test point is P = (4,4,3). 

Let us take a hypercube with l=2. Then we need to find all patterns with the x-

axis value between 3 and 5, with the y-axis value between 3 and 5 and the z-

axis value between 2 and 4. None of the patterns fall in this hyper-cube. We 

therefore increase the size of the hypercube. Let us increase l by 1 so that l = 3. 

In this case, the x-axis value should be between 2.5 and 5.5, the y-axis value 

should be between 2.5 and 5.5 and the z-axis value should be 

 

6 
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between 1.5 and 4.5 . Since there are no patterns falling into the 
hypercube we increase l= 4. Then the x-axis value should be between 2 
and 6, the y-axis value should be between 2 and 6 and the z-axis value 
should be between 1 and 5. The points falling within this hypercube will be 
X3, X4, X8, X12 and X13. If k=5, the five nearest neighbours have been 
found. If k is less than 3, then l has to be reduced till the correct number of 
points are found. If k is greater than 5, then l is again increased. This 
process is repeated till k nearest neighbours are found. 

 
Projection algorithm 
 
In this algorithm, the points are ordered according to a particular axis. 
If the points are ordered according to the x-axis, then the k nearest 

neighbours to the test point P can be determined. 
 
The actual distance from P to these points is found. Let the minimum 

of these distances be d and let the point be Z. 
Continue searching points according to its distance in the x-axis. 
Maintain the distance d which is the minimum actual distance of the 

points examined from Z. 
As soon as the distance of the point being considered has a distance 

in the x-direction which is greater than d, the search can be stopped. 
This process can be modified so as to carry out each step of the algo-

rithm in different axis. 
In other words, the first step of the algorithm is carried out in the x-

axis, the second step in the y-axis, etc. 
The search stops as soon as search in any axis stops. 
 
Example 
 
Consider the same three-dimensional example considered for the 

exam-ples in this lesson. If we order the points according to the distance 
of the  points from the x-axis of point P, in increasing order we get, 

 

X11, X12, X13, X15, X3, X4, X7, X8, X10, X14, X1, X2, X5, X6 and X9 with 
a distance of 0,0,1,1,2,2,2,2,2,2,3,3,3,3 and 3. The actual distance to P 

from the closest points to P are found. The actual distances from X11, 

X12, X13, X15, X3, X4, X7, X8, X10 and X14 from P are 3.16, 2.83, 2.44, 
3.74, 4.36, 3.0, 4.69, 3.46, 4.12 and 3.74 . After the first three distances, 

the minimum distance is 2.44 . It remains 2.44 till X14 is reached. After 
that since the distance in the x-axis itself is larger than 2.44, those points 

need not be searched and X13 is the closest point to P.  
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Ordered Partitions 
Ordered Partitions 

 

• All the points are partitioned using a technique called the ordered 
par-titions. 

 

• The range of values according to the first co-ordinate values is deter-
mined and divided into d blocks if the patterns are d-dimensional. 

 

• The points are partitioned according to the interval to which they 
be-long. 

 

• The blocks are made so that each partition contains equal number 
of samples. 

 

• Then in each block, partitions are made according to the second 
co-ordinate axis and so on. 

 

• When the closest pattern to a test pattern P is to be found, the 
range of values which contains the first co-ordinate of P is chosen 
as the block to be searched. The search then continues according 
to the second co-ordinate and the block whose range includes the 
second co-ordinate of P is searched, and so on till a point is found 
after going through all the d dimensions. 

 

• The distance of this point to the test pattern P is found. 
 

• The other blocks which have a value in the first co-ordinate which is 
larger than the smallest distance dist found till now need not be 
searched. 

 

• In this way many of the partitions need not be searched. 
 

Example 

 

Consider the following set of patterns :    

X1 = (1, 1, 1, 1); X2 = (1, 2, 1, 1); X3 = (2, 2, 2, 1); 

X4 = (2, 2, 2, 1); X5 = (1, 2, 2, 1); X6 = (1, 2, 5, 2); 
X

7 = (2, 1, 6, 2); 
X

8 = (2, 2, 5, 2); 
X

9 = (1, 2, 6, 2); 
X

10 = (2, 2, 6, 2); 
X

11 = (4, 1, 2, 3); 
X

12 = (4, 2, 1, 3); 
X

13 = (5, 2, 2, 3); 
X

14 = (6, 1, 2, 3); 
X

15 = (5, 1, 1, 3); 
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Each pattern consists of four values. The first three are the three fea-

tures and the fourth value gives the class of the pattern. The patterns are 

partitioned by giving a range for each partition to the first dimension. Each 

partition should have equal number of patterns. This is given in Figure 1. 
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Figure 1: Partitioning using ordered partitions 

 

Now if we have a point P = (4,4,3) and we need to find the nearest 
pat-tern, we first search at the first level in Figure 1. It goes along branch 
3 since the first co-ordinate of the point P falls in the range 4-6 . It then 
searches branch 3b since the second co-ordinate is closer to that range. 

So the actual distance from P to X12 and X13 is found. 
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d(P, X12) = 2.83 

 

d(P, X13) = 2.45 

 

Since the distance between P and X13 is the smaller value, the 

present closest distance is 2.45 and X13 is the closest point. 

 

The branch 3a need not be searched since the distance in the second 
co-ordinate from these patterns is at least 3 which is more than the 
minimum distance 2.45 . 

 

Branch 2 needs to be searched but not branch 1 since the distance in 
the first co-ordinate itself from the patterns in this branch is 3 which is larger 
than the minimum distance found so far which is 2.45 . In branch 2, branch 
2a need not be searched and 2b needs to be searched. After going through 

these patterns, it is found that X13 is the closest pattern to P. 

 

KD Tree 
 

• The kd Tree partitions the data into blocks. 
 

• At each stage, the patterns are partitioned to form two blocks. 
 

• The complete data is taken and divided into two blocks according 
to the first co-ordinate axis. 

 

• A hypercube represents all the patterns. 
 

• When a partition is made, a hyperplane is drawn parallel to one of 
the co-ordinate axis. 

 

• This will divide the patterns into two blocks. 
 

• Each partition is then again divided into two blocks which is repre-
sented in the kd tree by drawing a hyperplane parallel to one of the 
axes. 

 

• When the entire kd tree has been drawn, each block corresponds 
to some of the patterns. 
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• To find the closest pattern to the test pattern, find the block which 
contains the test pattern. Search the leaf nodes to find the closest 
pat-tern. Let the distance from P to this point be dist. Draw a 
hypersphere with radius dist and P as centre. 

 

• If this falls within a single block, then only the points falling inside 
this hypersphere need to be searched and the closest point found. 

 

• If the hypersphere falls into other blocks also, then go up the tree 
and come down the tree to the leaf nodes in the other blocks and 
search there also to find the closest point to P 

 

Example 

 

Take the same 3-dimensional example taken for the ordered partitions. 

 

Figure 2 gives the partitioning of the patterns. This is done by dividing 
the range in the first co-ordinate first, then by dividing the range in the 
second co-ordinate and then by dividing the range in the third co-
ordinate. By using this partitioning, the kd tree can be drawn. 

 
The kd tree for the above data is shown in Figure 3. Now if we need 

to find the closest neighbour to P = (4,4,2), you search down the kd tree 
and go to the region which contains patterns closest to P. In this case, it 

will be X13. If we find the distance between P and X13, we get 2.45 . We 
then need to search the other relevant points also which are within the 
radius of 2.45 around P. 
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Bayes Classifier 
 

Classification using Bayes Decision Theory 

 

• In this approach classification is carried out using probabilities of classes. 
 

• It is assumed that we know the a priori or the prior probability of each 

class. If we have two classes C1 and C2, then the prior probability for 

class C1 is PC 1 and the prior probability for class C2 is PC 2. 
 

• If the prior probability is not known, the classes are taken to be 
equally likely. 

 

• If prior probability is not known and there are two classes C1 and 

V2, then it is assumed PC 1 = PC 2 = 0.5. 
 

• If PC 1 and PC 2 are known, then when a new pattern x comes 

along, we need to calculate P (C1|x) and P (C2|x). 
 

• The bayes theorem is used to compute P (C1|x) and P (C2|x). 
 

• Then if P (C1|x) 

P (C1|x) < P (C2 
decision rule. 

 

Bayes Rule 

 
 

• P (C2|x), the pattern is assigned to Class 1 and if 

|x), it is assigned to Class 2. This is called the Bayes 

 

• If P (Ci) is the prior probability of Class i, and P (X |Ci) is the condi-

tional density of X given class Ci, then the a posteriori or posterior 

probability of Ci is given by 
 

( | ) = P (X |C )P (C ) 
P  Ci  X (

i   ) i  
P X 

 

 

• Bayes theorem provides a way of calculating the posterior probability P 

(Ci | X ). In other words, after observing X , the posterior probability 

that the class is ci can be calculated from Bayes theorem. It is useful 
to convert prior probabilities to posterior probabilities. 

 

• P (X ) is given by 

 

P (X ) = i P (X | Ci)P (Ci) 
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• Let the probability that an elephant is black be 80% and that an ele-

phant is white be 20%. This means P(elephant is black) = 0.8 and 

P(elephant is white) =0.2 . With only this information, any elephant will 

be classified as being black. This is because the probability of error in 

this case is only 0.2 as opposed to classifying the elephant as white 

which results in a probability of error of 0.8 . When additional in-

formation is available, it can be used along with the information above. 
 
 

If we have probability that elephant belongs to region X is 0.2 . Now 
if the elephant belongs to region X, we need to calculate the 

posterior probability that the elephant is white. i.e. P(elephant is 
white | ele-phant belongs to region) or P (W | X ). This can be 
calculated by using Bayes theorem. If 95% of the time when the 
elephant is white, it is because it belongs to the region X. Then 

 

P (W | X ) = P (X |W )∗ P (W )  = 0.95∗ 0.2  = 0.95 
 

P (X ) 0.2 

 

The probability of error is 0.05 which is the probability that the ele-
phant is not white given that it belongs to region X. 

 

Minimum Error Rate Classifier 
 

 

• If it is required to classify a pattern X , then the minimum error rate 
classifier classifies the pattern X to the class C which has the 
maximum posterior probability P (C | X ). 

 
• If the test pattern X is classified as belonging to Class C, then the 

error in the classification will be (1 - P (C | X )). 
 

• It is evident to reduce the error, X has to be classified as belonging 
to the class for which P (C | X ) is maximum. 

 
• The expected probability of error is given by 

 
 

 

(1 − P (C |X ))P (X )dX 
X 
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This is minimum when P (C | X ) is maximum (for a specified value of  
 (X ). 

 
• Let us consider an example of how to use minimum error rate 

classifier for a classification problem. Let us consider an example 
with three classes small, medium and large with prior probability 

 

 (small) = 13 

 (medium) = 12  
 (large) = 16 

 

We have a set of nails, bolts and rivets in a box and the three 
classes correspond to the size of these objects in the box. 

 
 

Now let us consider the class-conditional probabilities of these objects : 

 

For Class small we get 

 

P (nail | small) = 14 

P (bolt | small) = 12 

P (rivet | small) = 14 

 

For Class medium we get 

 

P (nail | medium) = 12 

P (bolt | medium) = 16 

P (rivet | medium) = 13 

 

For Class large we get 
 
 

P (nail | large) = 
P (bolt | large) = 

 

 
1 
3 

1 
3 
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P (rivet | large) = 13 

 

Now we can find the probability of the class labels given that it is a 
nail, bolt or rivet. For doing this we need to use Bayes Classifier. 
Once we get these probabilities, we can find the corresponding 
class labels of the objects. 

 

P (small | nail) = 
P (nail)|small)P (small) 

 

P (nail|small).P (small)+P (nail|medium).P (medium)+P (nail|large).P (large) 
 

 

This will give 
 

1 . 1 
P (small | nail) = 4 3 = 0.2143  

1
4 . 3

1 + 2
1 . 2

1 + 13 . 16 

 

Similarly, we calculate P (medium | nail) and we get 
 

1 .f rac12 
P (medium | nail) = 1  1

2   1  1 1 1 = 0.6429  

4 
.
 3 

+
 2 

.
 2 

+
 3 

.
 6 

 

and also P (large | nail) 
 

1 . 1 
P (large | nail) = 3 6 = 0.1429  

1
4 . 13 + 12 . 12 + 13 . 6

1 

 

Since P (medium | nail) > P (small | nail) and 
P (medium | nail) > P (large | nail) 

 
 

we classify nail as belonging to the class medium. The probability 
of error P (error | nail) = 1 − 0.6429 = 0.3571 

 

In a similar way, we can find the posterior probability for bolt 
 

1 . 1 
P (small | bolt) = 2 3 = 0.5455  

1
2 . 3

1 + 16 . 2
1 + 13 . 16 

1 . 1 
P (medium | bolt) = 6 2 = 0.2727  

1
2 . 3

1 + 16 . 12 + 13 . 16 
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1 . 1 
P (large | bolt) = 3 6 = 0.1818  

1
2 . 13 + 16 . 12 + 13 . 6

1 

 

Since P (small | bolt) > P (medium | bolt) 
and P (small | bolt) > P (large | bolt) 

 

 

we classify bolt as belonging to the class small and the probability 
of error P (error | bolt) = 1 − 0.5455 = 0.4545 

 
 

In a similar way, we can find the posterior probability for rivet 
 

1 . 1 
P (small | rivet) = 4 3 = 0.2727  

1
4 . 3

1 + 13 . 12 + 13 . 16 

1 . 1 
P (medium | rivet) = 3 2 = 0.5455  

1
4 . 13 + 13 . 12 + 13 . 6

1 

1 . 1 
P (large | rivet) = 3 6 = 0.1818  

1
4 . 13 + 13 . 2

1 + 3
1 . 6

1 

 

Since P (medium | rivet) > P (small | rivet) and 
P (medium | rivet) > P (large | rivet) 

 

 

we classify bolt as belonging to the class medium and the 
probability of error P (error | rivet) = 1 − 0.5455 = 0.4545 

 

Naive Bayes Classifier 
 

Naive Bayes Classifier 

 

• A naive bayes classifier is based on applying Bayes theorem to find the class of a pattern. 

 

• The assumption made here is that every feature is class conditionally independent. 
 

• Due to this assumption, the probabilistic classifier is simple. 
 

• In other words, it is assumed that the effect of each feature on a given class is independent of the value of other features. 
 

 

• Since this simplifies the computation, though it may not be always true, it is considered to be a naive classifier. 
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• Even though this assumption is made, the Naive Bayes Classifier is found to give results comparable in 

performance to other classifiers like neural network classifiers and classification trees. 
 

• Since the calculations are simple, this classifier can be used for large databases where the results are obtained fast with reasonable 

accuracy. 

 

• Using the minimum error rate classifier, we classify the pattern X to the class with the maximum 

posterior probability P (c | X ). In the naive bayes classifier, this can be written as 
 

P (C | f1, ..., fd). 

where f1, ..., fd  are the features.  

• Using Bayes theorem, this can be written as 
 

P (C | f1 , ..., fd) = 
P (C )  P (f1,...,fd)|C 

 

p(f1 ,...,fd)  

  
 

 

Since every feature fi is independent of every other feature fj , for j 6= i, given the class 

P (fi, fj  | C ) = P (fi  | C )P (fj  | C ) 

 

So we get, 

 

P (C, f1, ..., fd) = P (C ) P (f1  | C ) P (f2  | C )  · · · p(fd  | C ) 

 

= 
d 

p(C ) p(fi|C ).  
i=1 

 
 
 

The conditional distribution over the class variable C is 
 

 

1 

p(C |f1, . . . , fn) = Z p(C )  
 
 

 

where Z is a scaling factor. 

 
 

 
n 

p(fi|C )  
i=1 
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• The Naive Bayes classification uses only the prior probabilities of 

classes P(C) and the independent probability distributions p(fi | C ). 
 

 
 
Parameter Estimation 

 

• In supervised learning, a training set is given. Using the training 
set, all the parameters of the bayes model can be computed. 

 

• If nC of the training examples out of n belong to Class C , then the 
prior probability of Class C will be 

 

P (C ) = nC 
n 

 
 

• In a class C , if n1 samples take a range of values (or a single value) out 

of a total of nC samples in the class, then the prior probability of the  

feature being in this range in this class will be 

 

P (f1  is in range (a,b)) =  n1  
nC 

 

In case of the feature taking a small number of integer values, this can 
be calculated for each of these values. For example, it would be 

 

P (f1  is 6) =  n2  
n

C 
 

if n2  of the nC  patterns of Class c take on the value 6. 
 

• If some class and feature never occur together, then that probability 
will be zero. When this is multiplied by other probabilities, it may 
make some probabilities zero. To prevent this, it is necessary to 
give a small value of probability to every probability estimate. 

 
• Let us estimate the parameters for a training set which has 100 pat-

terns of Class 1, 90 patterns of Class 2, 140 patterns of Class 3 
and 100 patterns of Class 4. The prior probability of each class can 
be calcu-lated.  
The prior probability of Class 1 is 

 

P (C1) = 
100 

= 0.233 
 

100+90+140+100 
 

 

The prior probability of Class 2 is 
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P (C2) = 
90 

= 0.210 
 

100+90+140+100 
 

 

The prior probability of Class 3 is 

 

P (C2) = 
140 

= 0.326 
 

100+90+140+100 
 

 

The prior probability of Class 4 is 

P (C2) = 
100 

= 0.233 
 

100+90+140+100 
 

 

Out of the 100 examples of Class 1, if we consider a particular 

feature f1 and if 30 patterns take on the value 0, 45 take on the 
value 1 and 25 take on the value 2, then the prior probability that in 

Class 1 the feature f1 is 0 is 

 

P (f1  is 0) = 100
30  = 0.03  

 

The prior probability that in Class 1 the feature f1  is 1 is 

 

P (f1  is 1) = 100
45  = 0.45  

 

The prior probability that in Class 1 the feature f1  is 2 is 

 

P (f1  is 2) = 100
25  = 0.25  

 

Example for Naive Bayes Classifier 

 

Let us take an example dataset. 
 

Consider the example given in decision trees given in the Table 1. 
We have a new pattern 

 

money = 90, has-exams=yes, and weather=fine 

 

We need to classify this pattern as either belonging to goes-to-
movie=yes or goes-to-movie=no.  
There are four examples out of 11 belonging to goes-to-movie=yes.  
The prior probability of P(goes-to-movie=yes)= 4 = 0.364 11  

 

The prior probability of P(goes-to-movie=no) = 11
7  = 0.636  

 

There are 4 examples with money50 − 150 and goes-to-movie=no 
and 1 examples with money < 50 and goes-to-movie=yes. Therefore, 
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  Money Has-exams weather Goes-to-movie  
 

          

  25 no fine no    
 

  200 no hot yes    
 

  100 no rainy no    
 

  125 yes rainy no    
 

  30 yes rainy no    
 

  300 yes fine yes    
 

  55 yes hot no    
 

  140 no hot no    
 

  20 yes fine no    
 

  175 yes fine yes    
 

  110 no fine yes    
 

        

  Table 1: Example training data set 
 

P (money50 − 150 | goes − to − movie = yes) = 
1 = 0.25 and  

4  

        
 

P (money50 − 150 | goes − to − movie = no) = 47  = 0.429 

 

There are 4 examples with has-exams=yes and goes-to-movie=no 
and 2 examples with has-exams=yes and goes-to-movie=yes. Therefore, 

P (has − exams | goes − to − movie = yes) = 
2

4 = 0.5 P 

(has − exams | goes − to − movie = no) = 
4

7 = 0.429 

 
There are 2 examples with weather=fine and goes-to-movie=no and 2 

examples with weather=fine and goes-to-movie=yes. Therefore, 

P (weather = f ine | goes − to − movie = yes) = 
2

4 = 0.5 P 

(weather = f ine | goes − to − movie = no) = 
2

7 = 0.286 

 
Therefore 

P (goes − to − movie = yes | X ) = 0.364 * 0.25 * 0.5 * 0.5 = 0.023 

 

P (goes − to − movie = no | X ) = 0.636 * 0.429 * 0.429 * 0.286 = 0.033 

 

Since P (goes−to−movie = no | X ) is larger, the new pattern is 
classified as belonging to the class goes-to-movie=no. 
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Introduction to Decision Trees 
 

Decision Trees 

 

• A decision tree is a tree structure which is used to make decisions 
at the nodes and reach some outcome at the leaf nodes. 

 
• Decision trees are used for classification where each path is a set 

of decisions leading to one class. 
 

• Decision trees are used in decision analysis, where the decision 
tree visually represents decision making. 

 
• In pattern classification, the variable to be used for splitting at each 

node is to be determined. 
 

• A path from the root to a leaf node represents a set of rules which 
leads to a classification. 

 

Example of Decision Tree for Problem Solving 

 

• The decision tree can be used for problem solving. 
 

• At every node in the decision tree, a decision is taken depending 
on the outcome. It takes one of the branches from the node 
depending on the outcome. 

 
• Each leaf node of the decision tree pertains to one of the decisions 

possible. 
 

• As an example, we consider having a salt whose basic radical has 
to be found. The decision tree is shown in Figure 1. 

 
• By doing a number of tests and looking at the outcome of the tests, 

it is possible to check if the basic radical of the salt belongs to 
Group I, Group II, Group III, Group IV, Group V or Group VI. 

 
• The decision tree gives a clear description of the procedure to be 

fol-lowed to find the solution. 
 

• It can been that there are six leaf nodes corresponding to the 
identifi-cation of the salt. 
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  colour  
 

green red blue yellow 
 

  
 

A B C D 
 

 
 
 

Figure 2: Four way decision 

 

• Each path from the root to a leaf node defines one path in the decision 

tree. This corresponds to a rule. For example one rule would be : 

If ((salt+water+ dil HCl gives precipitate=n) and (salt+water+dil H2 S gives precipitate=n) and 

(salt+water+N H4 C l + N H4 OH gives white precipitate=y)) then (salt ǫ Group III basic radical) 
 

 

• The different leaf nodes have different path lengths. The leaf node belonging to Group I basic radical 

requires just one test or has only one decision node. Group II basic radical requires two tests and so on. 
 

• In this way, by forming the decision tree, problem solving can be carried out. 

 

Features of Decision Trees 
 

• The following are some of the features of the decision tree. 
 

 The nodes of the tree represent decisions leading to two or more branches or outcomes. If 

the nodes have only two decisions at every node, it is a binary decision tree. However, a 

multiway decision can be always split up into a number of two-way (or binary) decisions. 

Therefore a binary decision tree is sufficient to represent any situation. This is illustrated in 

Figures 2 and 3. Figure 2 shows a situation in a decision tree where there is a four-way 

decision depending on colour. This has been replaced by three binary decisions as shown 

in Figure 3. 
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 Is colour  
 

 green?  
 

y n  
 

A  Is colour 
 

  red? 
 

 y n  

  
 

 

16. Is colour 

blue? 
 

y n 

 

C D 
 
 
 

 

Figure 3: Binary decision 
 

 

X The decision at each node is done using attributes which may 
take values which are numerical or categorical. The numerical 
values may be integers or real numbers. By categorical 
attributes, we mean attributes which are described by using 
words. An example would be, if we have colour as an attribute 
and it can take values such as brown, red, green, etc. 

 
X The decision taken at a node may involve just one attribute or 

more attributes. If one attribute is involved, it is called a 
univari-ate decision. This results in a axis-parallel split. If more 
than one attribute is involved, it is called a multivariate split. 

 

Decision Tree for Pattern Classification 

 

\endash  Decision trees can be used for pattern classification where 
by making decisions on the attribute values at each node, we can 
identify the class of the pattern. 

 
\endash  The nodes represent the decisions and each leaf node represents a class. 
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\endash  The decision at each node may involve more than one 
feature and is called multivariate or may involve just one feature 
and is called uni-variate. 

 
\endash  The outcome at each node may be two or more. If every 

node has only two outcomes, it is a binary tree. 
 

\endash  The features or attributes can be either numerical or categorical. 
 

\endash  The number of classes involved can be two or more. 
 

\endash  Use of decision trees for pattern classification is shown in 
Figure 4. Here it is a two class problem, where the class is true or 
false, i.e. whether Ajay goes to the movies or not. The features of 
this problem are 

 

 

 The amount of money Ajay has in his pocket 
 

 Whether Ajay has exams or not 
 

 Is the weather hot, fine or rainy 

 

\endash  The first feature is a numerical feature, the second feature 
is a boolean feature and the third feature is a categorical feature. 
Hence, it can be seen that decision trees for pattern classification 
handle numerical, boolean and categorical features. 

 
\endash  It is to be noted that the first decision node has a three-way 

split. The decision node based on whether Ajay has exams or not is 
a binary split and the node on the weather has a three-way split. 

 
\endash  Every leaf node of the tree is associated with a class and 

every path from the root to the leaf gives a classification rule. For 

example, If (Has money = 50-150) and (Has exams = true) then (Goes 

to a movie 

 false). 
 

Computer Programs for Learning Decision Trees 
 

 

\endash  Several programs are available for decision tree learning. 
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 has money    
 

<50 

  

>150 

 

  
 

 
50−150 

 
 

     
 

goes to 
    

goes to 
 

has exams 
  

 

a movie   a movie 
 

= false     = true  

     
 

 y n  
 

 goes to    
 

 a movie weather? 
 

 = false    
 

     
 

  hot fine  rainy 
 

 
goes to 

  
goes to 

 

 goes to 
 

 a movie a movie a movie 
 

 = false = true = false 
 

 
 

Figure 4: Decision tree for pattern classification 
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X Some of them are 
 

– ID3 
 

– C4.5 . This program is developed by Quinlan and is an 
improve-ment of ID3. 

 
– CART 

 

Advantages of Decision Trees 

 

8. The rules are simple and easy to understand. It consists of a set of 
decisions followed by an outcome. 

 
9. Able to handle both categorical and numerical data. 

 
10. Easy to explain the outcome by observing the decision tree. 

 
11. It is robust and performs quite well even if it deviates from the true 

model. 
 

12. Can be used for classification of large amounts of data in a short time. 
 

Limitations of Decision Trees 

 

X Learning an optimal decision tree is NP-complete in some cases. 
For example, the number of oblique splits possible could be 
exponential in the number of training patterns. At each split point, 
the complexity of selecting an optimal oblique hyperplane is 
exponential. In some problems, axis- parallel decision trees do not 
represent non-rectangular regions well. 

 
X Complex trees can be created due to overfitting. Pruning is 

required to avoid this problem. 
 

X Some problems are hard to solve using decision trees like the XOR 
problem, parity problem and the multiplexer problem. In these 
cases, the decision tree becomes prohibitively large. 
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LINEAR DISCRIMINANT FUNCTIONS 
 
 

INTRODUCTION TO DISCRIMINANT FUNCTIONS 

Linear Discriminant Functions 
 

 

• One popular way of separating patterns belonging to two classes is by 
using a simple decision boundary. 

 
• We illustrate this using the collection of two-dimensional patterns shown 

in Figure 1.  
 
 
 

 
f1= f2 + 0.5 

 

O O 
 

f2  
O

 
O

 X X X 
  

O O 

 

X X 
 

1 
 
 

 
f1 

 

Figure 1: Classification using a Linear Discriminant Function 
 
 

 

• Two-dimensional example data 
 

 

Example 1 

 
There are five patterns from one class (labelled ‘X’) and six patterns from 
the second class (labelled ‘O’). This set of labelled patterns may be 
described using Table 1. 

 
• Linear separability 

The first six patterns are from class ‘O′
  and the remaining patterns 
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Pattern No. f eature1 f eature2 Class 

1 0.5 1.5 ‘O’ 

2 1.0 1.5 ‘O’ 

3 1.0 2.0 ‘O’ 

4 1.5 2.0 ‘O’ 

5 1.5 2.5 ‘O’ 

6 2.0 2.5 ‘O’ 

7 3.0 1.0 ‘X’ 

8 3.5 1.0 ‘X’ 

9 3.5 2.0 ‘X’ 

10 4.0 2.0 ‘X’ 

11 4.5 2.0 ‘X’ 
 

 

Table 1: Description of the patterns 

 

are from class ‘X′
. Consider the line represented by f1 = f2 + 0.5 shown in 

Figure 1. All the patterns labelled ‘O′
 are to the left of the line and 

patterns labelled ‘X′
 are on the right side. In other words, patterns 

corresponding to these two classes are linearly separable in this example 
as patterns belonging to each of the classes fall on only one side of the 
line. 

 

• Positive and negative half spaces  
One more way of separating the patterns of the two classes is by noting 

that all the patterns of class ‘O′
 satisfy the property that f1 < f2 + 0.5 or 

equivalently f1 - f2 is less than 0.5. For example, pattern 1 in Table 1 has a 

value of 1.5 for f eature2 and 0.5 for f eature1 and so this property  
is satisfied (because 0.5 - 1.5 = -1.0 (< 0.5)). Similarly, the sixth pattern 

satisfies this property because f1 - f2 is − 0.5. In a symmetric manner, all 

the patterns belonging to class ‘X′
 have the value of f1 to be larger than 

that of f2 + 0.5; equivalently, f1 - f2 > 0.5. For example, for the seventh 

pattern in the table, f1 - f2 is 2.0 ( 3.0 - 1.0) which is greater than 0.5. 
Based on the location of the patterns with respect to the  
line, we say that patterns of class ‘X′

 are on the positive side of the line 
(because f1 − f2 > 0.5 for these patterns) and patterns of class ‘O′

 are on 
the negative side (equivalently f1 − f2 < 0.5 for patterns labelled 
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‘O′
). Here, the line separates the two-dimensional space into two parts 

which can be called as positive half space (where patterns from class ‘X′
 

are located) and negative half space (which has patterns from class ‘O′
). 

 

• Variety of separating lines  
It is easy to observe that there are possibly infinite ways of realizing the 
decision boundary, a line in this two-dimensional case, which can  
separate patterns belonging to the two classes. For example, the line f1 = 

f2 also separates the first six points in Table 1 from the remaining 5 
points. 

 
• Functional form of the linear decision boundary  

It is convenient to abstract such lines using the following functional form: 
 
 

 

f (X)  = w1f1 + w2f2 + b = 0 (1) 

 

Correspondingly, the line f1 - f2 = 0 has w1 = 1; w2 = -1; and b = 0. 

Similarly, w1 = 1; w2 = -1; and b = -0.5 for f1 - f2 = 0.5. This repre-
sentation permits us to deal with patterns and decision boundaries in the 
multi-dimensional space. For example, in a d-dimensional space, the 
decision boundary is a hyperplane and it can be represented by 

 

 

f (X)  = wTX + b = 0 (2) 

 

where w and X are d-dimensional vectors. 
 

• Separation of patterns based on w and b  
We can use this representation to characterize linear separability. We say 

that two classes, say classes labelled ‘X’ and ‘O’ are linearly sepa-rable, if 
we can find a weight vector w and a scalar b such that 

 
wTX +b > 0 for all patterns X belonging to one class (say class ‘X’) and 

 
wTX + b < 0 for all the patterns belonging to the other class (that is class 
‘O’). 
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• Non-linear decision boundary  
Another possibility is to use a non-linear decision boundary to charac-
terize the separation between the two classes. For example, the non-linear 
decision boundary 

 
 

f1  = − f2
2  + 5f2  − 3 

 

is depicted in Figure 2.  

 

f1 = −f1
2

+5 f1 − 3 

 
 
 
 

O O 
 

f2 

O
 
O

 X X X 
  

O O 

 

X X 
 
 
 
 
 

f1  
 

Figure 2: Classification using a Nonlinear Discriminant Function 
 
 

 

• Location of the decision boundary  
Here, the value of b plays a role in deciding the location of the decision 

boundary. Note that the decision boundary between the two classes is 

characterized by wTX + b = 0. Based on the location of the origin (the zero 

vector), we can make the following observations with respect to the value 

of b. 
 

 Consider the situation where b = 0. In such a case, the origin lies on 
the decision boundary. This is because wTX + b = 0 for X = 0 
(origin) and b = 0, for any value of w. 
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 When the value of b is negative, that is when b < 0, the origin lies in 
the negative side; this can be observed from the fact that wTX + b < 
0 when X = 0 and b < 0, for any value of w. 

 
 The above observations hold in general in a d-dimensional space. 

We examine them with respect to the two-dimensional data set (d = 
2) shown in the example below. 

 
Example 2 

 
Consider the data shown in Figure 1 and Table 1. Let us consider the 

line f1 = f2; here, wT = (1,-1) and b = 0. The origin ((0,0)) is on the 

line f1 = f2 which is the decision boundary.  

Now consider the line f1 = f2 + 0.5; this can also be written as 2f1 − 

2f2 − 1 = 0. This line is obtained by shifting f1 − f2 = 0 down 
appropriately. Note that the points (0.5,0) and (0,-0.5) are on this 
line. Also, all the points labelled ‘X’ are on one side (positive side) 
and those labelled ‘O’ are located on the negative side of the line. 
Note that the origin is in the negative part. 

 
• Solving for the vector w  

Now consider the decision boundary charcaterized by 
 

f (X) = w1f1 + w2f2 + b = 0 

 

As noted earlier, (0.5,0) and (0,-0.5) are on the decision boundary. We can 

get the values of w1 and w2 by solving the equations obtained by 
substituting these points in the equation of the decision boundary. 

 

By substituting (0.5,0), we get 
 

0.5w1  + 0.0w2  + b = 0 ⇒ 0.5w1  + b = 0 (3) 

 

Similarly, by substituting (0,-0.5), we get 
 

0.0w1  − 0.5w2  + b = 0 ⇒ − 0.5w2  + b = 0 (4) 
 

 

By subtracting (4) from (3), we get 
 

0.5w1  + 0.5w2  = 0 ⇒ w1  + w2  = 0 ⇒ w1  = − w2 (5) 
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• The role of w  
One possible instantiation is w1 = 1 ; w2 = − 1; so, the value of b is − 0.5 

from both (3) and (4). The other possibility is w1 = − 1 ; w2 = 1; so, the 

value of b is 0.5. Out of these two possibilities, only the first is acceptable; 
the second is not. We can verify this by considering a positive example 

from Table 1. Let us consider the example (3, 1)T. In this case, we need 

wTX + b > 0; that is by using the first set of values, we have 
 

1 ∗  f1  − 1 ∗  f2  − 0.5 = 3 − 1 − 0.5 = 1.5 > 0 

 

Now, by using the second set of values, we have an inconsistency as 
 

−1 ∗  X1  + 1 ∗  X2  + 0.5 = − 3 + 1 + 0.5 = − 1.5 < 0 

 
 
 

 

• w is orthogonal to the decision boundary 
 

So, we accept the first set of values; this means that the vector w is orthogonal 
to the decision boundary as exemplified by equations (3),  
(4), and (5). In general, if p and q are two points on the decision boundary, 
then we have  

wTp + b = 0 = wTq + b ⇒ wT(p − q) = 0 

 

So, the vectors w and (p − q) are orthogonal to each other; observe that (p − q) 
characterizes the direction of the decision boundary.  

• w points towards the positive half space 
 

Further w points towards the positive half space. This can be verified by noting that the angle, θ, 

between w and any positive pattern vector is such that −90 < θ < 90. As a consequence cos(θ) is 

positive. 
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Learning the Discriminant Function 
 

Learning the Linear Discriminant Functions 
 

• Learning the Discriminant Function  
It is convenient to use the normalized data for automatically learning 

the decision boundary when the classes are linearly separable. In 

gen-eral, it is possible to obtain the decision boundary in the form of a 

hyperplane if we learn the vector w. It is simpler to learn the weight 

vector w when the classes are linearly separable. We describe an al-

gorithm, called Perceptron learning algorithm, for learning the 

weight vector when the classes are linearly separable. 
 

• Learning the weight vector  
This algorithm considers patterns sequentially and updates the weight 

vector w if a pattern is misclassified by the weight vector. It iterates 

through the set of patterns till there is no updation, or equivalently no 

pattern is misclassified during an entire iteration. It is convenient 

to consider patterns in the normalized form while applying this algo-  
rithm. This would mean that a pattern X is misclassified if wtX ≤ 0. In 

order to use the homogeneous form, we need to consider patterns after 

transformation and normalization. For example, the set of 3-dimensional 

vectors corresponding to the patterns given in lesson 26 is given in Table 

1. The problem is to find a 3-dimensional weight vector  
w which classifies all the patterns correctly. Equivalently, w should be  
such that wtX is greater than 0 for all the patterns; for example for 
all the patterns in Table 1. 

 

Pattern No. f eature1 f eature2 f eature3 

1 - 1.0 - 1.5 - 1.0 

2 - 1.5 - 2.0 - 1.0 

3 - 1.5 - 2.5 - 1.0 

4 - 2.0 - 2.5 -1.0 

5 3.0 1.0 1.0 

6 3.5 2.0 1.0 

7 4.0 2.0 1.0 
 

 

Table 1: Description of the normalized patterns 
 
 

 



97 

 

 

• Perceptron Learning Algorithm  
Now we describe an algorithm, called perceptron learning algorithm,  
for learning w. Let the normalized patterns in the d + 1-dimensional 

space be X1, X2, · · ·, Xn. 

\endash  Initialize w by choosing a value for w1 (for simplicity it 

is adequate to choose w1 = 0). 
 

\endash  For j = 1 to n do 

if wi
tXj ≤ 0 (that is when the normalized pattern Xj is misclas-

sified) then i = i+1 and wi = wi−1 + Xj (update the current w 

vector to classify Xj better). 
 

\endash  Repeat step 2 till the value of i has not changed 
during the entire iteration (that is the current w vector classifies 
all the training patterns correctly). 

 
• Updation of Weight Vector  

It is possible to explain the intuition behind the proposed scheme 

for updating the weight vector as follows. Let wi be the current 

weight vector which has misclassified the pattern Xj ; that is wi
tXj < 

0. So, using the above algorithm, we have 
 

wi+1  = wi  + Xj 
 

Note that 
 

wi
t
+1Xj  = wi

tXj + || Xj ||
2

 
 

As a consequence, wi
t
+1Xj  is larger than wi

tXj  by || Xj  ||
2  because 

• Xj ||
2 is positive. This would mean that the updated vector wi+1 is 

better suited, than wi, to classify Xj correctly because wi+1Xj is 

larger than wiXj and so can be positive even if wiXj were not. 
 

Example 1 

 

We can illustrate the working of the algorithm using the data in 
Table 1 with the help of the following steps. 

 

• w1 = (0, 0, 0)t and X1 = (−1.0, −1.5, −1.0)t. Here, w1
tX1 = 0 

and so w2 = w1 + X1 which is represented by 
 

w2  = (−1.0, −1.5, −1.0)t. 
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17. Next we consider pattern X2 and w2
tX2 is 5.0 (> 0). Similarly, X3, and X4 also are properly classified. 

 

Note that w2
tX3 = 6.25, and w2

tX4 = 6.75. So, these patterns do not affect the weight vector.  

18. However, w2
tX5 = -5.5 (< 0). So, w3 = w2 + X5, that is 

 

w3  = (2.0, −0.5, 0.0)t. 

Note that w3 classifies patterns X6, and X7 correctly. 
 

X However x1 is misclassified by w3. Note that w3
tX1 is − 1.25(< 0). So, w4 = w3 + X1 is obtained. It is 

given by 
 

 w4  = (1.0, −2.0, −1.0)t.  

w4 correctly classifies X2, X3, and X4.   

5. However, w4 misclassifies X5 as w4
t
X5  = 0.0 (≤ 0.0). So, w5 = 

w4 + X5, that is   

 w5  = (4.0, −1.0, 0.0)t.  

w5 classifies X6 and X7 correctly.   

6. Note that w5 misclassifies X1 as w5
tX1  = − 2.5 < 0. So, w6 = 

w5 + X1, that is   

 w6  = (3, −2.5, −1)t.  

w6 classifies X2, X3, X4, X5, X6, X7, and X1. Specifically, w6
tX2 = 

3, w6
tX3   =  2.75, w6

tX4   =  1.25, w6
tX5 =  5.5, w6

tX6   =  4.5, 

w6
tX7  = 6, and w6

tX1  = 1.75.   

 So, the algorithm converges to w6 which is the desired vector. In other words, 3X1 - 2.5X2 - 1 

= 0 is the equation of the decision boundary; equivalently, the line separating the two classes is 

6X1 - 5X2 - 2 = 0 
 

\endash  Convergence of the Perceptron Algorithm  

In general, it is possible to show that the perceptron learning algorithm will converge to a correct 

weight vector in a finite number of iterations when the classes are linearly separable. The number 

of iterations may increase based on the location of the training patterns. 
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\endash  Updation of the w vector 
 

Let us consider the following. Let the training set of patterns, from two 

classes, after transformation and normalization be {X1, X2, · · · , Xn} and let 

w1 = 0. Let us say that the first pattern, if any, misclas-sified by w1 be X1 

which means that w1
tX1 ≤ 0; further X1 ∈  

{X1, X2, · · · , Xn}.  Now we get w2 

  1  2  
 

= w1   + X . Let Xk be the 
 

pattern misclassified by w2; update w2. In this manner let X be mis- 
 

classified by wk. Note that wk+1  = wk + Xk.     
 

 

\endash  Linear Separability  
If the classes are linearly separable, then there exists a weight vector  
w such that wtX > 0 for every training pattern X, irrespective of its class 

label, because of normalization. Now consider wk+1 which is given by  

wk+1  = w1  + X1
 + X2  + · · · + Xk

 (1) 

Now    

wtwk+1  = wt(w1  + X1
 + X2

 + · · · + Xk) > kδ (2) 

because w1   =  0 and where δ = min {wtXi} over all Xi  in the 

training set. Further,    
 

wk
t
+1wk+1  = (wk  + Xk)t(wk  + Xk) = || wk ||2  + || Xk ||2  +2wk

tXk
 

 

Note that wk
tXk  ≤ 0 and if γ = max {|| Xk ||2}, then  

|| wk+1 ||2 < kγ (3) 

This is obtained by expanding recursively wk  in terms of wk−1  and 

Xk−1.  

X Cosine of the angle between w and wk+1  
Let θ be the angle between w and wk+1. So, using (3) and (4), we have 

 

wtwk+1 kδ 
cos θ

 
=

 || wk+1 

|| 
>
 
√

kγ 
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But we know that cos θ < 1. So, we have  
 

√ 

       
γ 

 
 

kδ 

< 1 ⇒ k < 

 

(4) 

 

      
 

 

√ 

 

 

δ2
 

 

 γ 
 

 

Note that k, the number of iterations is bounded because γ is finite for finite size training vectors. Also, δ 

cannot be zero as the classes are linearly separable and wtXi > 0. So, in a finite number of iterations the 

algorithm converges. It is possible that k is very large if δ is close to zero; this can happen if one of the Xis is 

almost orthogonal to w. 
 

• Multi-class Problems  

A linear discriminant function is ideally suited to separate patterns belonging to two classes that 

are linearly separable. However, in real life applications, there could be a need for classifying 

patterns from three or more classes. It is possible to extend a binary classifier, in different 

ways, to classify patterns belonging to C classes where C > 2, We list two of the popularly used 

schemes below: 
1. Consider a pair of classes at a time. Note that there are C(C−1)

  
2  

such pairs when there are C classes in the given collection. Learn a linear discriminant 

function for each pair of classes. Combine these decisions to arrive at the class label. 
 

X Consider two-class problems of the following type. For each class Ci, create the class Ci which consists of patterns from all the re-  

maining classes. So, Ci = 
C Cj . Learn a linear discriminant  

j=1;j=6i 
  

function to classify each of these two-class problems. Note that there are C such two-class 

problems. These C linear discriminants give us the overall decision. 
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Support Vector Machines 
 

Introduction to Support Vector Machines (SVMs) 
 

 

• SVM as a Linear Discriminant  
In a simplistic sense, SVM is based on linear discriminant functions. So, 

the classification is based on a function of the form wTX + b; w and b are 

learnt from the training data. In a two-class problem with a positive class 

and a negative class, for any pattern X from the positive class wTX + b > 0 

and wTX + b < 0 for any pattern X from the negative class when the 

patterns from the two classes are linearly separable. 
 
 

• SVM as a Maximum Margin Classifier  
Consider a two-class problem where the classes are linearly separable. Let 

the positive class be characterized by a hyperplane wTX + b = 1 and the 

negative class by a parallel plane wTX + b = −1 so that training patterns, 

near the margin, from the respective classes fall on these planes. These 

planes are called the support planes. The decision boundary or the 

separating plane is characterized by wTX + b = 0. It may be illustrated 

using the two-dimensional data shown in Figure 1. 
 

w.x + b = − 1   
w.x + b = 0 

 
w.x + b =1 

 
 

O O 
f2  

O O 
X X X 

 
O O 

X X 
 

 
1 

 
 

 
f1 

 

 

Figure 1: Support Lines Characterizing the Margin 
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• Margin Between the two Lines  
In the two-dimensional case, we have support lines, instead of planes,  
and the decision boundary also is a line as shown in the figure. Patterns 

labelled ‘O′
 are from the negative class and those labelled ‘X′

 are from the 
positive class. As discussed in lesson 26 (refer to equation (7)), the 
distance from any point X on the line wTX + b = 1 to the decision 
boundary is given by 

 

 f (X) 
= 

 1  
 

|| X || || w ||  

 
 

In the above, note that f (X) = 1 for any X on the line wTX + b = 1. 
  

Similarly, the distance from a point on the line wTX + b = − 1 to the 

decision boundary is given by ||
−

W
1
|| . So, the distance between the two 

supporting lines, or the margin, is ||W
2
|| . Observe that this expression for 

margin holds good even in the d- dimensional (d > 2) case. 
 

 

• Maximizing the Margin  
maximizing ||W

2
||  or equivalently Maximizing the margin is achieved by 

 

 
by finding a w that minimizes or for the sake of simplicity in 

 

calculus, 
||W

2
||2 . Optimization is carried out by using constraints of the 

form wTX + b ≤ −1 for all X in the negative class and wTX + b ≥ 1 for all 
X in the positive class. 

 

 

• SVM and Data Reduction  
SVM selects the training patterns falling on the support planes. Such 
vectors are called support vectors. These vectors are adequate to learn 
both w and b. This amounts to data reduction or compression. 

 
• Non-linear decision boundaries  

It is possible that the two classes are not linearly separable. In such a case, 

the decision boundary can be non-linear. In a generalized sense, a non-

linear function can be represented by a linear function. We discuss this 

issue next. 
 

• Generality of Linear Discriminants  
The notion of linear discriminant functions is very general. This idea may 
be extended to handle even non-linear discriminants using the 

 

 

 
2 

 
||W|| 
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homogeneous representation. For example, consider the non-linear de-
cision boundary 

 

f1 = − f2
2 + 5f2 − 3 = 0 as 

shown in Figure 2. 
 

 
2 

f1 = − f2 + 5 f2 − 3 
 
 

 

f2 OO 
 

 
  

 

O
 
O

 X X X 
 

O O 

 

X X 
 
 
 

 
f1  

 

Figure 2: Classification using a Nonlinear Discriminant Function 
 
 

 

• Representing a Non-Linear Function Using a Linear Form  
Such a non-linear function may be represented using the homogeneous 
form 

 

f (X′
) = wTX′  = 0 (1) 

 

where 

−1 

w = 5 

  

−3 
 

f22 

X′ = f2 

1 
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It may be illustrated using the following example. 
 

• Learning the generalized linear discriminant function  
Consider a binary classifier which assigns x to class ‘O’ (negative class) if 
f (x) < 0 and to class ‘X’ (positive class) if f (X) > 0, where 

 

f (x)  = a + bx + cx2
 (2) 

 

Observe, based on the discussion above, that equivalently we can assign  

• to ‘O’ if wTX′
  < 0 and to class ‘X’ if wTX′

  > 0, where 
 

  
a  

w = b 

c 

 

1 

X′ = x  
  

x2
 

 

Let us consider a set of labelled patterns that are not linearly separa-ble. 
Specifically, let us consider the one-dimensional data set shown in Table 
1. Observe that the data is not linearly separable. Further, the 

 

Pattern No. x class 
   

1 -1 ‘O’ 

2 -2 ‘O’ 

3 0 ‘O’ 

4 1 ‘X’ 

5 3 ‘X’ 

6 5 ‘O’ 
 

 

Table 1: Non-Linearly Separable Classes 

 

decision boundary is characterized by f (x) = 0. Now by appropriate 

transformation and normalization, where the components in X′
 are 1, value 

of x, and value of x2
, we get the data shown in Table 2. We can use the 

perceptron learning algorithm to obtain the weight vector w. 
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Pattern No. 1 x x2
 

1 -1 1 -1 

2 -1 2 -4 

3 -1 0 0 

4 1 1 1 

5 1 3 9 

6 -1 -5 -25 
 

 

Table 2: Normalized non-linearly separable data 
 
 

1. Here, we start with  
  

0 

w1 = 0 

  
and 

−1 

x′
1 = 1 

−1 
 

w1 misclassifies X1
′
. So, gets updated to get w2 = w1 + X1

′
. 

 

19. Continuing with the algorithm, we end up with w70 which classifies 
all the 6 patterns in Table 2 correctly. It is given by 

−1 

w70 = 35  
−11 

 

So, the decision boundary is given by 
 

f (x)  = −1 + 35x − 11x2 = 0 (3) 

 

This example illustrates the generality of the linear discriminants. It is 
possible to deal with non-linearly separable classes using a linear 
discriminant. Further, it is possible to extend this idea to vector-valued  
X also. 

 

X SVM for Classification  
Support vector machine (SVM) generates an abstraction in the form 
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f2 = f1 + 2 

 
f1 − f2 = 0 

O 

f2 
O

(2,4) 
f1 − f2 = 2  

\endash  (1,3) 

 
 
 
 

 
X 

(2,0) 
f1 

 
 

X 
 

X 

 

Figure 3: Illustration of Support Vector Machines 
 
 

 

of a linear discriminant. It also selects a set of vectors called support 
vectors which are margin patterns and are members of the training set. We 
illustrate this using Figure 3. 

 

\endash  Support Vectors 
 

Consider three of the points shown in Figure 3. These are from two 

classes (‘X’ and ‘O’). Here, (1, 3)T and (2, 4)T are from class ‘O′
 and (2, 

0)T is from class ‘X′
. The lines f2 − f1 = 2 and f1 − f2 =  

2 characterize the boundaries of the classes ‘O′
 and ‘X′

 respectively. These 

lines are the support lines and the points are the support vectors. 

These three support vectors are adequate to characterize the classifier. 
 
 

\endash  Adequacy of support vectors  
Now consider adding points (1, 4)T, (1, 5)T and (2, 5)T from class ‘O′

 and 

(2, −1)T, (1, −2)T, and (1, −3)T from class ‘X′
. They are properly classified 

using the support lines (in turn using the support vectors). The region 
between the two lines is the margin and because the support lines 
correspond to maximum value of the margin, they are as far away 
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from each other as possible. 
 

X Decision Boundary 

The line f1  − f2  =  0 is equidistant from the two decision lines and  
it forms the right choice for the decision boundary between the two 

classes. Here, points satisfying the property that f1 − f2 < 0 are classified 

as members of class ‘O′
 and those satisfying the condition f1 − f2 > 0 are 

of class ‘X′
. 

 
X Properties of the SVM Classifier  

From the above discussion, we make the following observations. 
 

 SVM may be viewed as a binary (two class) classifier. It abstracts a 
linear decision boundary from the data and uses it to classify patterns 
belonging to the two classes. 

 
 Support vectors are some of the vectors falling on the support planes 

in a d-dimensional space. 
 

 SVMs learn, from the data, linear discriminants of the form wT + b 
that corresponds to the maximum margin. 

 
 When the two classes are linearly separable, it is easy to compute the 

classifier characterizing the maximum margin. 
 

X Linearly Separable Case  
Consider again the points (1, 3)T and (2, 4)T from class ‘O′

 and (2, 0)T 

from class ‘X′
 shown in Figure 3. They are linearly separable. In fact, we 

can draw several (possibly infinite) lines separating correctly the two 
classes represented by these three points. The corresponding normalized 
data is shown in Table 3. 

 

Pattern No. f eature1 f eature2 bias 

1 -1 -3 -1 

2 -2 -4 -1 

3 2 0 1 
 

 

Table 3: Normalized set of patterns in three dimensions 
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13. Which Linear Discriminant?  
Using Perceptron learning algorithm, we get the decision boundary 

characterized by f1 − 3f2 = 0. The initial weight vector, w1 = 0 

misclassifies (−1, −3, −1)T. So, w2 = (−1, −3, −1)T. It misclassifies (2, 0, 

1)T. So, w3 = (1, −3, 0)T. Note that w3 classifies all the three patterns 

properly and it corresponds to the decision boundary f1 − 3f2 = 0. 
 

14. Decision Boundary of the SVM  
In the case of the SVM, we choose that line as decision boundary which 

provides maximum margin. When the patterns are linearly separable, we 

can get the linear decision boundary corresponding to the maximum 

margin solution. For example, consider the three patterns in Figure 3. In 

this two-dimensional example, two points of a class are adequate to  
characterize the support line. So, for the two points (1, 3)T and (2, 4)T from class ‘O’, the 

support line is f2 − f1 = 2. Now consider a line  
parallel to this support line and passing through the point (2, 0)T from class ‘X’; this is f1 − f2 

= 2 and it is the support line for class ‘X’. These two lines, namely f2 − f1 = 2 and f1 − f2 = 2 
characterize  
the margin. So, the decision boundary which is equidistant from these two 

lines is characterized by f1 − f2 = 0. 
 

15. Learning the SVM 
Consider two points (2, 2)T and (1, 1)T on the line f1 − f2 = 0. Because these points are on 

the decision boundary, we need w = (w1, w2)T to  
satisfy 
2w1 + 2w2 + b = 0 (corresponding to (2, 2)T) and  
w1 + w2 + b = 0 ( for the point (1, 1)T). From these two equations, we get w1 + w2 = 0; so, w is of the 

form (α, −α)T and correspondingly, b  

X 0. In general, α is any constant. However, it is good to choose α in a 

normalized manner. For example, it is convenient to choose α such that  
wTX + b = 0, or equivalently, wTX = 0 for all the points on the decision  
boundary; 
wTX = 1 for all the points on the support line f1 − f2 = 2; and wTX = −1 for all the points on the support 

line f2 − f1 = 2  
This can be achieved by choosing a value of 

1
2 for α. So, correspondingly 

w = (12 , − 12 )T  and b = 0. 
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Clustering 
 
What is Clustering? 
 

Clustering 

 

• Clustering is the Task of Grouping Data based on Similarity It is 
the process of partitioning a set of patterns. 

 
Example 1 

 

Let us consider the following collection of nine characters: 
 

b A . B a , C 
′  

c 

 

After partitioning, we get the following three clusters of characters: 
 

. , ′ b a c A B C 

 

Here, clustering is done based on size. The first cluster has the smallest 

sized characters; the second one has lower-case characters and the third 

cluster has three upper-case letters. Thus, clustering means grouping of 

data or dividing a large dataset into smaller data sets of some similarity. 

 

• Clustering is Data Organization We 
illustrate this idea with an example. 

 
Example 2 

 
 

10101 10101 11100 

01011 10101 11100 

10101 10111 11110 

01011 01011 00111 

01010 01011 00111 

01010 01010 00011 

10111 01010 00011  
 
 

 

GROUP  by GROUP by 

ROWS COLUMNS 

 

Figure 1: Clustering is Data Organization 
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Data Organization 
 

Consider Figure 1. There are 7 patterns; each pattern is 

characterized by 5 binary features. We use the Hamming distance 

between patterns to organize the data. Hamming distance is the 

number of mismatch-ing bits between two patterns. For example, 
the Hamming distance between ‘10101’ and ‘01011’ is 4 as the first 

four values do not match whereas the distance between ‘10101’ 

and ‘10111’ is 1 as there is a mismatch in the fourth bit. 
 

– Clustering rows 
 

Initially, we group the seven patterns (rows of the pattern matrix) 

which is called group by rows in the figure. In fact we rearrange 

the patterns such that similar patterns are placed next to each 

other; similarity between a pair of patterns is larger if the 

Hamming distance between them is smaller. The patterns are 

given in the second column of the figure after rearranging. 
 

– Clustering columns 
 

The columns in these patterns are further rearranged based on 

similarity between columns. Here again we used the Hamming 

distance between columns to rearrange; each column is a binary 

vector of length 7. For example, distance between the first 

column ‘1 1 1 0 0 0 0’ and the fifth column ‘1 1 1 1 1 0 0’ is 2 as 

there is a mismatch in the fourth and fifth bit positions. 
 

– Structure in the data 
 

The data resulting after rearranging based on columns is 
shown in the third column of the figure. Observe that such a 
rearrange-ment shows the structure in the data better than the 
original data (shown in the first column of the figure). Note the 
closeness of 1s in the first three rows in the left side columns 
and also in the last 4 rows. 

 

• Clustering is Partitioning a Dataset  
We illustrate this notion using a set of patterns shown in the following 

example. We consider a collection of nine 3-dimensional patterns here. 
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Example 3 
 

Consider the set of points, X , given by 

 

• =  {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (6, 3, 1), (6, 4, 1) (6, 6, 6), (6, 6, 7), (7, 7, 7)} 

A partitioning of X into C1, C2, and C3  is  

C1 =  {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)} 

 

C2 =  {(6, 3, 1), (6, 4, 1)} and 

 

C3 =  {(6, 6, 6), (6, 6, 7), (7, 7, 7)} 

 

– Inter-Cluster and Intra-Cluster Similarity 
 

Here, each cluster is compact in the sense that the distance be-tween any two points in a cluster is smaller than that 

between 
 

points in different clusters. So, intra-cluster distances are smaller and inter-cluster distances are larger. 

For example, using the city-block (Manhattan) distance, between X = (x1, x2, · · · , xd ) and 

• =  (y1, y2, · · · , yd), which is defined by 
 

 
i=d  

X 
d1(X, Y ) = | xi   − yi  |  

i=1 
 

the maximum intra-cluster distance in each cluster and the min-imum inter-cluster distance 

between a pair of clusters is shown in Table 1. Note that inter-cluster distance between Ci and Cj 

is the same as that between Cj and Ci. Also, the minimum of the minimum inter-cluster distances 

between all possible clusters (which is 6 between C1 and C2) is greater than the maximum of the 

maximum intra-cluster distances (which is 3 in C3) in this example. In this example, the clusters 

are well separated. 
 

– Clustering Based on Similarity 
 

Such an ideal partition may not be available in practice; in such a case, we need to characterize the intra-cluster and 

inter-cluster 
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distances appropriately. There could be a variety of ways to 
char-acterize it; one other characterization, for example, is that 
a pat-tern is in the same cluster as its nearest neighbor. Such 
a charac-terization may help in partitioning patterns into 
clusters that are elongated. In general, we partition such that 
intra-cluster similar-ity is high and inter-cluster similarity is low. 

 

Cluster Maximum Intra Minimum Inter 

 Cluster Distance Cluster Distance 

C1 2 with C2 is 6 

C2 1 with C3 is 7 

C3 3 with C1  is 14 

 

Table 1: Intra-cluster and Inter-cluster Distances 

 

– K-Partition of a Dataset 
 

Here, we have obtained a hard partition of the data set X . If there 

are K clusters in the resulting partition, then we call it a K-partition. 

We define a K-partition of X as follows. 

 P artition(X , K)  =  πX
K   =  {C1, C2, · · · , CK }, 

 

K \  

i[ 
 

where Ci   =  X  CiCj   =  φ, i =6 j and Ci   =6 φ f or any i. 
 

=1  
 

 

So, the collection of K clusters is exhaustive which means 
every element of X is assigned to exactly one of the clusters 
and no two clusters have a common element. It is possible to 

show that the number of K-partitions of an n element set is 

 

1  

20. ! 

 
 

K  K (i)n. 
 

(−1 )K −i i  

X    
 

i=1    
 

  

– Exhaustive Enumeration 
 

There are approximately 11,259,666,000 4-partitions (K=4) of a 
set having 19 (n=19) elements. So, exhaustive enumeration of all 
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the partitions to get the best partition is expensive for large n. 
As a consequence, it is practical to consider only a subset of 
all possible partitions. This is the motivation behind the design 
of a variety of clustering algorithms; each of the algorithms 
considers an appropriate subset of partitions to pick one. 

 

\endash  Clustering is Data Compression 
 
 

– It is possible  to view clustering as a data compression  
tool. 

Let a set, Sn, of n patterns be partitioned into K clusters. Let each  
of the K clusters be represented by a point. Then the collection 

of representatives is a set, SK , of size K. 
 

– Data Compression 

Typically K < n. So, if we use SK instead of Sn in decision 

making, then there is a data compression by a factor of K
n
 . We 

illustrate this idea using the two-dimensional data set shown in 

Figure 2. Here, there are patterns corresponding to two classes 

with labels: X and O. There are 32 patterns labelled X and 24 

patterns labelled O. There are three clusters; of these one cluster 

has only one pattern which is an outlier. We ignore it. The 

remaining two clusters are represented by their respective 

centroids, where the centroid of a cluster C is given by   

1 X
X

C  

C entroid(C)  = 
 

 

| C | X 
 

  ∈ 
 

 

– Representing Clusters 
 

It is also possible to represent a cluster using a medoid where 
medoid is a member of the cluster which is most centrally 
located. That is sum of the distances from the medoid to the 
remaining points in the cluster is minimum. There could be 
several other ways of representing clusters. 

 

– Classification of the Compressed Data 

For example, if we use SK , instead of Sn, as a training set in 

NNC, then the number of distances to be computed, for each test 
pattern, will reduce from n to K. This can lead to a significant 
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Figure 2: Representing Clusters by their Representatives 
 

 

reduction in the classification time. For the data shown in Fig-ure 2, using the NNC the test 

pattern marked T is assigned to class X whether we use the entire data set shown on the 

left or the compressed data shown on the right. In fact, not only in the neighborhood 

classifiers, clustering has been successfully used in a variety of classifiers including those 

based on Support Vector Ma-chines, Artificial Neural Networks, and Hidden Markov 

Models. In all these cases, some kind of data compression is achieved by using the cluster 

representatives instead of the entire data consid-ered originally. 
 

\endash  Applications of Clustering  

There are several important application areas where clustering plays an effective role. These include: 

 

 Document Analysis and Recognition: Here, we are interested in analysis 

and recognition of printed and handwritten text. Specific examples include recognition of 

zip code/pin code, analysis and recognition of signatures of customers on bank 

transaction slips, and classification of multi-lingual text documents. 
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 Data Mining: Clustering generates abstraction of the data set 
in the form of clusters and their representatives. In data min-
ing, clustering is popularly used to group large data sets and 
the clustering output is used in further decision making 
activities like classification and regression. 

 
 Information Retrieval from WWW: Text mining is at the heart 

of information retrieval (IR). In IR both the content of each web 
page and linkage (hypertext) information between pages is 
used. Typically, content is a collection of multimedia 
documents, mostly text and also images. Clustering is used in 
grouping both the content and linkage information. 

 
 Biometrics: Face images, iris of the eye, speech/speaker data, and 

fingerprint images are some of the typically encountered data here. 

Clustering is popularly used in grouping data in all these cases. 
 

 Bioinformatics: Clustering is used in both DNA and protein se-
quence analysis in bioinformatics. 

 
Clustering a set of Physical Objects  
In all the above cases, data is typically available in a form amenable 

for direct processing by the computer. For example, text may be 

viewed as a sequence of ASCII characters and image and speech 

data is available in digital format. Similarly, sequence data 

encountered in bioinformat-ics and transaction data collected in data 

mining are naturally stored on a digital computer. However, there are 

applications in pattern clus-tering where the data is obtained from 

physical objects. For example, in order to discriminate humans from 

the chairs in a lecture hall, we need to represent humans and chairs 

on a computer. Note that chairs and humans are physical objects. 
 

 

 

Representation of Patterns and Clusters 
 

Clustering Process 
 

 

• The Process of Clustering 
The process of clustering consists of the following steps.  

1. Representation of patterns:  

Representation is the most important and difficult part in pattern clustering in particular and 

pattern recognition in general. We consider various issues associated with representation. 
 

– Features may not be Relevant: 
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We illustrate it using the following example.  
Example 1 

 

For example, consider the simple two-class data set shown in Table 1. 
 
 

Number of Terms Class Label 

100 Politics 

110 Politics 

120 Politics 

130 Politics 

105 Sports 

115 Sports 

135 Sports  

Table 1: Classification into Politics and Sports Classes 
 

 

– Representation of documents 
 

Here, 7 news documents are represented using their size in terms of number of 

terms. Also, the class label in the form whether the news item is on Politics or Sports 

is also pro-vided in each case. If a test pattern (news item) has 132 terms, then its 

class label is Politics based on NNC and and another news item with 133 terms is 

classified as a Sports item. Even though we can make such decisions using the NNC, 

these decisions are not appealing intuitively because 
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document size and class labels politics or sports are not nec-

essarily correlated. Suppose we cluster these points into two 

groups:{100, 105, 110, 115, 120}, {130, 135}. By considering 

the centroids of the two classes Politics(P) and Sports(S) in 

each cluster, we get 110 - S, 110 - P, 130 -P, 135 - S as rep-

resentatives. Note that we get the same decisions using 

NNC and these representatives as training patterns on the 

two doc-uments considered earlier with sizes 132 and 133. 
 

– Inappropriate representation 
 

In this example, there is a problem in the representation 

which is easier to perceive. The feature Size used to 

repre-sent news items is not correlated with the class 

labels Politics and Sports. In general, in an application 

area, it may not be easy to obtain features that are 

correlated with the class labels; further, the complexity of 

the problem increases with the dimensionality of data set. 
 

– Representation of Physical Objects:  
There are several applications where the patterns to be clus-  
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Figure 1: Chairs and Humans: Chair by X and Human by O 

 

tered are physical objects. For example, discrimination be- 
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tween a cricket ball and a soccer ball in sports; between a 
laptop and a desktop on an executive’s desk; between a 
two-wheeler and a four-wheeler on roads. 

 

– Chairs and humans 
 

Consider the problem of clustering a collection of humans and 

chairs in a lecture hall. We can represent the collection using 

height and weight of the objects. Consider the representations 

in the two-dimensional space shown in Figure 1. Note that the 

two classes are well-separated. In general, it is possible to use 

many more features including cost, academic qualification, and 

material used to make. Some of these features may not have 

meaningful values for either of two classes of objects. We may 

not know which subset of features are ideal to be used. 
 

– Feature Selection/Extraction: 

 

∗  Feature selection is the process of selecting a sub-set 
of the given collection of features. 

 
We illustrate this idea using a simple example data 
shown in Table 2. 

 

 

Transaction No a b c d e 

t
1 1 0 1 0 1 

t2 0 1 0 1 1 

t3 1 0 1 0 1 

t4 0 1 0 1 1 

t5 0 1 0 1 0 

t6 0 1 0 1 0 

t
7 1 0 1 1 1 

Table 2: Feature Selection 

 

∗  Clustering transactions 
 

There are seven transactions and each transaction is 

based on buying one or more of the five items, a, b, c, d, 

and e. A ‘1’ against an item in the transaction indicates that 

the item is bought and a ‘0’ indicates that the item is not 
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bought. For example, in transaction t1, items a, c, e are bought. Consider a 

partitioning of the seven transactions into two clusters C1 and C2 where  

C1 =  {t1, t3, t7} 

C2 =  {t2, t4, t5, t6} 

 

∗  Hamming distance based clustering 
 

Note that the maximum Hamming distance between any two 5-bit binary patterns 

in either C1 or C2 is 1. By ig-noring item ‘e’, we get the following clusters: 
 

C1   =  {1010, 1010, 1011} 
C2   =  {0101, 0101, 0101, 0101} 

 

∗  Distance between clusters 
 

Now the maximum distance between any two patterns in C1 is still 1, whereas the 

maximum distance between any pair of patterns in C2 is 0. Observe that by ignoring 

item ‘d’ also, the items selected in representing the seven 
 

transactions are ‘a’, ‘b’, and ‘c’. If only these three items are used, then all the three 

patterns in C1 are identical. Similarly, all the four patterns in C2 are also identical.  

∗  Feature selection 
 

This amounts to reducing the number of features from 5 to 3, such that 

patterns in each cluster are identical. Of course, ideally it is adequate to select 

feature b from the five features as patterns in a cluster have the same value of 

b and in different clusters the values are different.  

∗  Feature extraction 
 

Feature extraction is a process of selecting a smaller set of features that are 

linear or non-linear combinations of the original features. Stated another way, 

feature extraction is selection of a subset of features from a transformed set. 

One of the most popular schemes for feature extraction is based on Principal 

Components.  

∗  Principal components (PCs) are linear combina- 
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tions of the input features. 

 

– Representation of Clusters: 

 

∗  Cluster descriptions 
 

In addition to representing patterns, it is important to 
generate representations or descriptions of the 
clusters. These are used in decision making; 
classification is one of the popular decision making 
paradigms used here. Clus-ters and their descriptions 
are also used in other prediction tasks like regression.  

∗  Inductive learning 
 

Inductive Learning is typically used to generate such 
gen-eralized descriptions of clusters. One can use 
either a formal language like mathematical logic or 
descriptions based on statistics to represent a partition 
of a data set. We explain a scheme for describing 
clusters using the fol-lowing example. 

 

Example 2 
 

We illustrate the notion of cluster description using the 
data in Figure 2.  

∗  Logical description 
 

There are four points in a cluster and they are 
described by 

 

(f1 =  a)  ∧  (f2 =  d) 

(f1 =  c)  ∧  (f2 =  f ) 

(f1 =  a)  ∧  (f2 =  f ) 

(f1 =  c)  ∧  (f2 =  d) 

 

 

The cluster as a whole is described by 
 

(f1 =  a · ·c)  ∧  (f2 =  d · ·f ) 

 

Note that the description of the cluster is generated such 
that some of the unseen patterns are captured by it. For 

 



121 

 

 

 

f2 
 
 
 
 
 

f 
 

 

e 
 
 

d 

 
 
 
 
 
 
 
 

 

X 
X

 
 
 
 
 

 

X X 

 

a b c 
f1 

 

Figure 2: Description of Clusters 
 
 

example, a pattern of the form (f1 = b) ∧  (f2 = e) is also 

captured by the cluster description even though the 

pattern is not explicitly present in the collection. 
 

Example 3 
 

Let us consider again the data given in Table 2. We can 
represent it using a tree structure as follows. Initially the 
root node is added. Each of the transactions is added to 
the tree incrementally.  

∗  Adding the first transaction 

First t1 is added; here, items a, c, and e are present. 

So, a child node is added to the root and item ‘a’ is 
stored in it with a count of 1; similarly a path is set up 
by adding nodes appropriately to add items c and e in 
that order with counts of 1 each. The corresponding 
tree is shown in Figure 3. 

 

∗  Tree corresponding to the first two transactions Now 
transaction t2 is considered; the items present in the 
transaction are b, d, and e. Because item ‘a’ is absent 
here, we start a new branch at the root and include b 
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Figure 3: Representation of one Transaction 
 

 

with a count 1 and add the remaining part to set a path b, 
d, e with counts of 1 each. This is depicted in Figure 4.  

 
 

 
ROOT 

 

a:1 
b:1
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c:1 

 
e:1 

e:1 

 

Figure 4: Representation of Two Transactions 

 

∗  Incremental updation 

Now addition of t3 requires no additional nodes, but the 

counts of nodes a, c, and e are increased by 1 each in 

the existing path. Thus we increment the counts of items 

if a new transaction has its corresponding path already 

present from the root node. The intermediate tree, so 

obtained, is shown in Figure 5.  

∗  The final tree structure  
However, when the path corresponding to the transaction  
is not present in the tree, then we need to insert additional 

nodes appropriately. For example, when t7 is added, there 

is a path from the root for a, c; but d is not present in the 



123 

 

 

ROOT 
 

a:2 
b:1

 

 
d:1 

c:2 

 

e:1 
e:2 

 

Figure 5: Representation of Three Transactions 
 

 

path next of the current tree. So, we add a new node 
to accommodate d with a count 1 and add one more 
node to store item e with count 1. The final tree after 
inserting all the transactions is shown in Figure 6.  

 

 
ROOT 

 

a:3 
b:4

 

 
d:4 

 c:3  
 

e:2 d:1 e:2 
 

 
 

  
 

 e:1  
 

 
 

Figure 6: Representation of Transactions 
 
 

– Statistical descriptions 
 

We illustrate the notion of inductive learning further using 
another example. 

 

Example 4 
 

Consider the three-cluster data described in Example 3 of 

lesson 30. We can represent each cluster by one or more rep-

resentative patterns. One popular cluster representative is its 
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centroid. The centroids of the three clusters C1, C2, and 

C3 respectively are 
 

µ1 =  (1.25, 1.25, 1.25) 

µ2 =  (6.00, 3.50, 1.00) 

µ3 =  (6.33, 6.33, 6.66) 

 

Note that even these representatives can be used to describe 
unseen patterns. For example, pattern (2, 2, 2) is not a mem-

ber of C1 but µ1 is closer to the pattern. Similarly, the pattern (6, 

4, 2) which is not in C2 is better explained by µ2 than by the 

other two centroids. So, even this representation can be viewed 
as an inductive description of the clusters. 

 

X Computation of Similarity between Patterns:  
There are a variety of similarity and distance (dissimilarity) 
func-tions that are used to characterize the proximity between 
a pair of patterns. We describe it further in the next lesson. 

 
X Algorithms for grouping or Clustering:  

Popularly clustering algorithms are categorized as either parti-tional or hierarchical. In 
the case of partitional algorithms, a single partition of the data set is generated and a 
hierarchy of partitions is generated using hierarchical algorithms. 
 

Clustering Process 
 

Clustering Process 
 
 

• Representation: 
 

 
– Representation of patterns and clusters is an important part of 

clustering.  
Specifically, feature selection and extraction are useful in 
repre-senting patterns. Feature selection was briefly discussed 
in the previous lesson. Here, we consider feature extraction. In 
feature extraction, we extract a set of features from a given 
collection of input features. 

 
– Typically, the number of extracted features is less than the 

number of input features.  
It is possible that each extracted feature is either a linear or a 
non-linear combination of the input features. A popular 
scheme for linear feature extraction is based on principal 
components. 
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• Principal Components  
Let 

X1, X2, · · · , Xn 
be a collection of patterns in a D-dimensional space of reals. So, 

Xi =  {Xi1, Xi2, · · · , XiD } f or 1 ≤ i ≤ n 
 

• Eigenvectors corresponding to the largest eigenvalues  
The eigenvectors P1, · · · , Pd  corresponding to the d largest eigenvalues 
of the covariance matrix Ω are the d principal components. This 
means that the eigenvalues of Ω are such that λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 
λd+1 ≥ · · · , ≥ λD .  

Example 1 

 
We illustrate this with the help of a two-dimensional example. Consider 
the set of 6 two-dimensional patterns shown in Figure 1. They are 
represented by the following vectors in the two-dimensional space. 

(1, 2)t  , (2, 1)t  , (2, 2)t  , (6, 7)t  , (7, 6)t  , (6, 6)t. 
• Computation of principal components  

In order to compute the principal components, we need to compute 
the covariance matrix, Ω, which is given by 

 

 

 =  E[(X − µ)(X − µ)t] 
 

• Sample mean  
In this example, µ is computed by finding the sample mean 
(centroid) of the data which is given by 

 
 

 
1 

6 
1 
    

µ  = X Xi   = (24, 24)t =  (4, 4)t (1) 

 

   

 
6 i=1 6     

 

 

• Sample covariance matrix  
Using the value of µ from (1), we compute Ω based on the sample 
covariance matrix given by 

 
 

1 
6       

Ω  = X(Xi 

− 

µ)(Xi 

− 

µ)t (2) 

 

  

 
6 i=1     

Now computing the sample covariance matrix for the data, we get 
 

 
1
7  

1
6   
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3 3   
Ω  =     (3) 
      
 16 17   

  3  3   
 

• Characteristic equation  
The characteristic equation is given by Det(Ω − λI ) = 0, where I is 
the identity matrix; so, the characteristic equation is given by 

 

 ( 

1
7  

− 
λ) 

   
1
6   

 
  

3     3     
              
              =  0  

   16    
1
7        

       (   

− 

λ)    
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3 
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So, we get the characteristic equation (11 − λ)( 13 − λ)  =  0. 

As a consequence, the eigenvalues, in decreasing order of 
magnitude, are 

λ1 =  11 ; λ2 = 1
3 

 

 

• Principal components  
The corresponding eigenvectors are 

 

P1   =  (1, 1)t  ; P2   =  (1, −1)t, 
 

where P1 and P2 are the principal components which are depicted 
as PC1 and PC2 respectively in Figure 1. Note that the two 
eigenvectors are orthogonal to each other and PC1 is in the 
direction of maximum variance of the data. 

 
• Popular linear feature extraction scheme  

Principal component analysis is the most popular linear feature 
extrac-tion scheme. There are a variety of other linear schemes 
and non-linear schemes for feature extraction. We do not discuss 
them here. Inter-ested readers may refer to the important 
references provided at the end of the module. 

 
• Similarity Computation  

Computation of similarity between patterns is an important part of 
any clustering algorithm. Dissimilarity between patterns is captured 
by a distance function; larger the similarity between a pair of 
patterns, the distance between them is smaller or vice versa. 

 
– Distance functions  

Metrics are popularly used to characterize the distance; a metric, 
d, satisfies the following properties for all patterns X, Y, and Z:  

∗  Reflexivity: d(X, X )  =  0 ; d(X, Y )  ≥ 0 

∗  Symmetry: d(X, Y )  =  d(Y, X ) 

∗  Triangular Inequality: d(X, Y ) + d(Y, Z ) ≥ d(X, Z) which is 

equivalent to stating that the sum of the lengths of any two 

sides of a triangle is greater than the length of the third 

side. 
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Figure 1: Principal Components for the two-dimensional data 

 
 

 

We use distance functions to characterize clusters. Distance 
be-tween patterns in the same cluster is less than that 

between pat-terns in different clusters. 
 

– Euclidean distance  
Euclidean distance, also called the L2 norm, is the most 
popular distance measure in clustering. It is given, for two d-
dimensional vectors X and Y by 

 
 

d 
1  

L2(X, Y )  =  d2(X, Y )  =  [
X

 
 

(Xi − Yi)
2)] 2 

 

i=1   
 

   
 



129 

 

 

– Translation and rotation invariance  
The advantage with Euclidean distance is that it is invariant to 
translations (shifting all the patterns by the same amount) or 
rotations (points are rotated in the plane around a point). 
Further, it is easy for human perception as it corresponds to 
the crow-flying distance. However, it varies with scaling; that is 

when the patterns scaled differently in different feature 
directions. 

 
 Theorem of the Ugly Duckling:  

This theorem states that the number of predicates shared by any 
two patterns is constant when all logically possible predicates are 
used to represent patterns. 

 
 There is no unsupervised classification  

Based on the above discussion we can conclude that there is no 
unsuper-vised classification; some kind of knowledge is essential 
for clustering. Such knowledge is used in one or more of the 
following: 

 

  Representation: Domain knowledge may be used to represent pat-
terns appropriately. 

 
 Representation of documents  

For example, consider the data given in Example 4 in the 
previous lesson. Instead of characterizing each document by 
the number of terms, if we use the importance or weight of 
each term in the documents, then we get a better 
representation. 

 
 TF-IDF  

For example, in text classification, the weight of each term is 
char-acterized by the term frequency - inverse document 
frequency. In this case, domain knowledge is used to select 
the term frequency and inverse document frequency. If a term 
does not occur in a document, then the corresponding weight 
should be zero; simi-larly, if a term occurs more frequently in a 
document, then the weight should be large. Term frequency 
captures the importance of a term based on its frequency of 
occurrence in a document. Fur-ther, if a term, like is, occurs 
frequently in all documents, then its weight is low; note that 
frequent terms like is, the, of cannot play a discriminative role. 
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If there are N documents in a collection, then the weight, 
popu-larly called as tf-idf of a term i in a document j is 

 

 

N 

weight
ij 

=  log(tf
ij )  ∗  log( Ni 

)
 

  
where, 
tfij = Number of times term i occurs in document j, and 
Ni = Number of documents, out of N, in which term i occurs 

 
\endash  Similarity Computation: Knowledge may be used to 

characterize the distance/dissimilarity measure. 
 

 Different distance measures 
 

For example, using Euclidean distance instead of the city-

block distance may lead to a different clustering. We illustrate 
it with the following example. 
Example 2  
Consider three two-dimensional points A, B, and C given by 

=  (0, 0)t  B  =  (2, 2)t  C  =  (5, 2)t  . N ow, 
L1 (A, B)  = 

| − 
2 

| 
+ 
| − 

2 
| 

=  4 ; L1(B, C)  =  3 
 

        
 

       

1        

L2(A, B)  =  (4  + 4) 

 

=  
√

8 ; L2(B, C)  =  3 

 

2  
 

 

 Resulting partitions could be different 
 

Note that, based on L1 distance, B and C are clustered in 
prefer-ence to A and B. However, in terms of L2 distance, A 
and B are closer than B and C; so A and B clustered together 
before B and C. 

 
Clustering Algorithm: Knowledge may be used in selecting the kind 
of clustering algorithm or in fixing the values of the parameters 
used by the algorithm. We discuss some of the relevant issues in 
the next lesson. 
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Clustering labelled data  
Patterns to be clustered are either labelled or unlabelled. Clustering 
algorithms are typically used to group sets of unlabelled patterns. 
This paradigm is popular and so clustering is viewed as grouping of 
unla-belled patterns.  

– Classification based on clustering  
However, it is possible that clustering of labelled patterns can 
also be useful in several engineering applications. For 
example, consider classification of handwritten digits 0 to 9. 
There are 10 classes; further it is possible that each class has 
one or more subclasses. For example, in a collection of 
handwritten 1s, there could be several subclasses because of 

the way different people write the character. Clustering a class 
of 1s might reveal the subclasses existing in the class; the 
same idea might be applicable to obtain subclasses 
corresponding to other digits as well.  

– Labelled and unlabelled clustering  
It is important to note that clustering the labelled patterns 

might give different set of representatives compared to 
clustering the data without taking the labels into account. We 
illustrate this with the help of Figure 2. We obtained the data 
here by adding some more chairs (heavier chairs) and 
humans (kids) to the data shown in Figure 3 shown in the 
previous lesson.  

– Difference between labelled and unlabelled clustering 
 

If we generate four clusters by grouping patterns in each class 
into two clusters, we get the clusters shown by rectangular 
boundaries. On the contrary, by grouping the entire collection 
of patterns into 4 clusters, we end up with the clusters 
depicted by using rectangles with rounded corners; these 
clusters are not convincing. A cluster is formed using subsets 
of chairs and humans. Further, another subset of chairs is 
partitioned into two clusters. So, in this case, it is good to use 
the class labels in clustering. 
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Figure 2: Labelled Clustering 
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Clustering Algorithms 
 

Algorithms for Clustering 
 

 

• In this lesson, we describe several clustering algorithms with an 
em-phasis on the kind of knowledge used. 

 
• There is a wide variety of clustering algorithms. 

 

• Different approaches can be described with the help of the 

hierarchy shown in Figure 1. 
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Figure 1: Taxonomy of Clustering Algorithms 
 
 

 

• At the top level, there is a distinction between the hierarchical, par-
titional (hard) and soft clustering paradigms based on whether the 
clusterings generated are partitions or overlapping. 

 
• The clustering algorithms are either hierarchical, where a nested 

se-quence of partitions is generated, or partitional where a partition 
of the given data set is generated. 

 
• The soft clustering algorithms are based on fuzzy sets, rough sets, 

artifi-cial neural nets (ANNs), or evolutionary algorithms, specifically 
genetic algorithms (GAs). 
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Hierarchical Algorithms 

 

 

• Hierarchical algorithms produce a nested sequence of partitions of 
the data which can be depicted by using a tree structure that is 
popularly called as dendrogram.  

• Hierarchical algorithms are either divisive or agglomerative. 
 

• In the former, starting with a single cluster having all the patterns, 
at each successive step a cluster is split; this process continues till 
we end up with each pattern in a cluster or a collection of singleton 
clusters. 

 
• Divisive algorithms use a top-down strategy for generating 

partitions of the data. The effort involved here is in identifying which 
cluster to split and how to split. Typically, a cluster with a large 
variance (or average squared deviation from the centroid) is 
selected to split.  
Further, exhaustive enumeration of all possible splits (2-partitions) 
of a set of size m is (2m). 

 
• Agglomerative algorithms, on the other hand, use a bottom-up 

strategy. They start with n singleton clusters when the input data 

set is of size n, where each input pattern is in a different cluster. At 
successive levels, the most similar pair of clusters is merged to 
reduce the size of the partition by 1. 

 
• An important property of the agglomerative algorithms is that once 

two patterns are placed in the same cluster at a level, then they 
remain in the same cluster at all subsequent levels. 

 
• Similarly, in the divisive algorithms, once two patterns are placed in 

two different clusters at a level, then they remain in different clusters 
at all subsequent levels. 
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Agglomerative Clustering 

 

Typically, an agglomerative clustering algorithm goes through the 
follow-ing steps: 

 
• Initialize each cluster with a distinct pattern. Compute the proximity  

(similarity/dissimilarity matrix) between all pairs of patterns. 
 

• Find closest pair of clusters and merge them. Update the proximity 
matrix to reflect the merge. 

 
• If all the patterns are in one cluster, stop. Else, go to step 2. 

 

• Note that step 1 in the above algorithm requires O(n2) time to 

compute pairwise similarities and O(n2) space to store the values, 
when there are n patterns in the given collection. 

 
• In the single-link algorithm, the distance between two clusters C1 and 

C2 is the minimum of the distances d(X, Y ), where X ∈  C1 and Y ∈  

C2. 
 

• In the complete-link algorithm, the distance between two clusters C1 

and C2  is the maximum of the distances d(X, Y ),where X  ∈  C1  and 

Y  ∈  C2. 
 

 Note that the single-link algorithm constructs a minimal spanning tree with 

nodes located at the data points. On the other hand, the complete-link 

algorithm characterizes strongly connected components as clusters. 
 

 Hierarchical clustering algorithms are computationally expensive. 
 

 The agglomerative algorithms require computation and storage of a 

similarity or dissimilarity matrix of values that has O(n2) time and 
space requirement. 

 
 Initially, they were used in applications where hundreds of patterns 

were to be clustered. 
 

 However, when the data sets are larger in size, these algorithms are 
not feasible because of the non-linear time and space demands. 

 

 It may not be easy to visualize a dendrogram corresponding to 
1000 patterns. 

 
 Similarly, divisive algorithms require exponential time in the number of 

patterns or the number of features. So, they too do not scale up well in 

the context of large-scale problems involving millions of patterns. 
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Partitional Clustering 

 

 Partitional clustering algorithms generate a hard or a soft partition 
of the data. 

 
 The most popular of this category of algorithms is the K-Means 

algo-rithm. 
 

 

K-Means Algorithm 

 

A simple description of the K-Means algorithm is given below: 
 

Select K initial cluster centers. Assign each of the n patterns to one 
of the K clusters; a pattern is assigned to its closest center/cluster. 

 
Compute the cluster centers based on the current assignment of 
pat-terns. 

 
Assign each of the n patterns to its closest center/cluster. 

 
If there is no change in the assignment of patterns to clusters 
during two successive iterations, then stop; else, go to step 2. 

 

The above algorithm is called convergent K-Means algorithm. 
 

Selecting the initial cluster centers is a very important issue. There 
are a variety of schemes for selecting the initial cluster centers; 
these include selecting the first K of the given n patterns, selection 
K random patterns out of the given n patterns, and viewing the 
initial cluster seed selection as an optimization problem and using a 
robust tool to search for the globally optimal initial seed selection. 

 
 

 

Example 1 

 

K-means algorithm may be illustrated with the help of the three-
dimensional data set of 10 points given below. 

 

(1, 1, 1)t  (1, 1, 2)t  (1, 3, 2)t  (2, 1, 1)t  (6, 3, 1)t 

(6, 4, 1)t  (6, 6, 6)t  (6, 6, 7)t  (6, 7, 6)t  (7, 7, 7)t 
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C luster1 C luster2 C luster3 

 

(1, 1, 1)t (1, 1, 2)t (1, 3, 2)t 

(2, 1, 1)t (6, 3, 1)t 

(6, 4, 1)t 

(6, 6, 6)t 

(6, 6, 7)t 

(6, 7, 6)t 

(7, 7, 7)t 
 

Table 1: The first iteration of the K-Means algorithm 
 
 

 

Considering the first three points as the initial seed points of a 3-partition, 
The three cluster representatives and assignment of the remaining 7 

points to the nearest centroids is shown in Table 1 using L1 metric as the 
distance measure  
The centroids of the clusters are 

 

(1.5, 1, 1)t, (1, 1, 2)t, (5.4, 5.1, 4.3)t 
 

Assignment of the 10 patterns to the nearest updated centroids is shown 
in Table 2. The updated cluster centroids are 

 

C luster1 C luster2 C luster3 

(1.5, 1, 1)t (1, 1, 2)t (5.4, 5.1, 4.3)t 

(1, 1, 1)t (1, 1, 2)t (6, 3, 1)t 

(2, 1, 1)t (1, 3, 2)t (6, 4, 1)t 

  (6, 6, 6)t 

  (6, 6, 7)t 

(6, 7, 6)t 

(7, 7, 7)t 
 

Table 2: The second iteration of the K-Means algorithm 
 
 

 

(1.5, 1, 1)t, (1, 2, 2)t  (6.1, 5.5, 4.66)t 
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Subsequent iterations do not lead to any changes in the assignment of 
points or in the centroids obtained. K-Means algorithm minimizes the 
sum of the squared deviations of patterns in a cluster from the center. If 
mi is the centroid of the ith cluster, then the function minimized by the K-
Means algorithm is 

 
\endash  x ith cluster (x − mi )t(x 

− mi). i=1 ∈  

 
Note that the value of the function is 55.5 for the 3-partition. However, if 
we consider the initial seeds to be 

 

(1, 1, 1)t, (6, 3, 1)t, (6, 6, 6)t, 
 

then we have the assignment shown in Table 3. Further iterations do not 
 

C luster1 C luster2 C luster3 

(1, 1, 1)t (6, 3, 1)t (6, 6, 6)t 

(2, 1, 1)t (6, 4, 1)t (6, 6, 7)t 

(1, 1, 2)t (1, 3, 2)t (6, 7, 6)t 

(1, 3, 2)t  (7, 7, 7)t  
Table 3: The optimal 3-partition of the K-Means algorithm 

 

 

affect any changes in the assignment of patterns. The value of squared 
error criterion for this partition is 8. This shows that the K-Means 
algorithm is not guaranteed to find the globally optimal partition. 

 

 The time complexity of the algorithm is O(nK dl), where l is the 
number of iterations and d is the dimensionality. 

 
 The space requirement is O(K d).  
 These features make the algorithm very attractive. 

 
 It is one of the most frequently used algorithms in a variety of appli-

cations; some of these applications involve large volumes of data, 
for example, the satellite image data. 
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 It is best to use the K-Means algorithm when the clusters are 
hyper-spherical. 

 

 It does not generate the intended partition, if the partition has non-
spherical clusters; in such a case, a pattern may not belong to the 
same cluster as its nearest centroid. 

 
 Even when the clusters are spherical, it may not find the globally 

op-timal partitions as discussed in Example 1. 
 

 Several schemes have been used to find the globally optimal partition 
corresponding to the minimum value of the squared-error criterion. 
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